【题目】已知
是等差数列,其前
项中的奇数项的和与偶数项的和之差为
.
(1)请证明这一结论对任意等差数列
(
中各项均不为零)恒成立;
(2)请类比等差数列的结论,对于各项均为正数的等比数列
,提出猜想,并加以证明.
科目:高中数学 来源: 题型:
【题目】某省积极响应教育部号召实行新课程改革,为了调查某校高三学生的物理考试成绩是否达到
级与学生性别是否有关,从该校高三学生中随机抽取了部分男女生的成绩得到如下列联表:
考试成绩达到 | 考试成绩未达到 | 总计 | |
男生 | 26 | 40 | |
女生 | 6 | ||
总计 | 70 |
(1)(ⅰ)将
列联表补充完整;
(ⅱ)据此列联表判断,能否有
的把握认为“物理考试成绩是否达到级与性别有关”?
(2)将频率视作概率,从该校高三年级任意抽取3名学生的成绩,求物理考试成绩达到
级的人数的分布列及期望.
附:![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10..828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校开设了射击选修课,规定向
、
两个靶进行射击:先向
靶射击一次,命中得1分,没有命中得0分,向
靶连续射击两次,每命中一次得2分,没命中得0分;小明同学经训练可知:向
靶射击,命中的概率为
,向
靶射击,命中的概率为
,假设小明同学每次射击的结果相互独立.现对小明同学进行以上三次射击的考核.
(1)求小明同学恰好命中一次的概率;
(2)求小明同学获得总分
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于独立性检验的叙述
①常用等高条形图表示列联表数据的频率特征;
②独立性检验依据小概率原理;
③独立性检验的结果是完全正确的;
④对分类变量
与
的随机变量
的观测值
来说,
越小,
与
有关系的把握程度就越大.
其中叙述正确的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有如下命题,其中真命题的标号为( )
A.若幂函数
的图象过点
,则![]()
B.函数
(
,且
)的图象恒过定点![]()
C.函数
有两个零点
D.若函数
在区间
上的最大值为4,最小值为3,则实数m的取值范围是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查
结果只有“满意”和“不满意”两种
,从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 5 | 9 | 11 | 9 | 7 | 9 |
满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为
,求随机变量
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为检验
两条生产线的优品率,现从两条生产线上各抽取
件产品进行检测评分,用茎叶图的形式记录,并规定高于
分为优品.前
件的评分记录如下,第
件暂不公布.
![]()
(1)求所抽取的
生产线上的
个产品的总分小于
生产线上的第
个产品的总分的概率;
(2)已知
生产线的第
件产品的评分分别为
.
①从
生产线的
件产品里面随机抽取
件,设非优品的件数为
,求
的分布列和数学期望;
②以所抽取的样本优品率来估计
生产线的优品率,从
生产线上随机抽取
件产品,记优品的件数为
,求
的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com