精英家教网 > 高中数学 > 题目详情
(本题满分14分)
某学校某班文娱小组的每位组员唱歌、跳舞至少会一项,已知已知会唱歌的有2人,会跳舞听有5人,现从中选2人。设为选出的人中既会唱歌又会跳舞的人数,且
(1)请你判断该班文娱小组的人数并说明理由;
(2)求的分布列与数学期望。

解法一:(1)既会唱歌又会跳舞的有2人,且文娱队中共有5人
(2)

0
1
2
P



 
 =. 

解法一:(1)设既会唱歌又会跳舞的有x人,那么由题意可知:
只会唱歌的有(2-x)人,只会跳舞的有(5-x)人,
文娱队中共有(7-x)人,那么只会一项的人数是(7-2 x)人.--------------------------(3分)
显然x可以取得的值只有0,1,2          
① 当x=0时,为不可能事件,显然不符合题意-------------------------------(4分)
② 当x=1时,是对立事件,且
所以x=1时不符合题意---------------------------------------------------------------(6分)
③当x=2时,符合题意。----(8分)
综上可知道:既会唱歌又会跳舞的有2人,且文娱队中共有5人-----------------(9分)
(2)的可能取值为0,1,2      -----------------------------------------------------(10分)
,------------------------------------------------(11分)
,--------------------------------------------------(12分)

0
1
2
P



 
 =. -------------------------------(14分)
如果按照下列解法最多给10分
解法二:设既会唱歌又会跳舞的有x人,则文娱队中共有(7-x)人,那么只会一项的人数是(7-2 x)人.-------------------------------------------------(2分)
(I)∵,∴.……………(3分)
.∴.∴x=2.
故文娱队共有5人.……………………………………(5分)
(II)的可能取值为0,1,2      -----------------------------------------------------(6分)
,---------------------------------------------------(7分)
,----------------------------------------------------(8分)

0
1
2
P



 
 =. -------------------------------(10分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量的概率分布和数学期望;
(3)计分介于20分到40分之间的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,且比赛结束.已知射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.
(1)求射手甲在这次射击比赛中命中目标的概率;
(2)求射手甲在这次射击比赛中得分的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校的学生记者团由理科组和文科组构成,具体数据如下表所示:
组别
理科
文科
性别
男生
女生
男生
女生
人数
4
4
3
1
学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.(Ⅰ)求理科组恰好记4分的概率?(4分)
(Ⅱ)设文科男生被选出的人数为,求随机变量的分布列和数学期望.(8分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知随机变量X的分布列为P(X =k)=,k=1,2,3,则D(3X +5)等于 (     )
A.6B.9C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

随机抽取某厂的某种产品100件,经质检,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为
(1)求的分布列;
(2)求1件产品的平均利润(即的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于5.13万元,则三等品率最多是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某班有名同学,一次考试后的数学成绩服从正态分布,则理论上分到 分的人数是 (     ) 
A.32B.16C.8D.20

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
小明购买一种叫做“买必赢”的彩票,每注售价10元,中奖的概率为2%,如果每注奖的奖金为300元,那么小明购买一注彩票的期望收益是多少元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对某班级50名同学一年来参加社会实践的次数进行的调查统计,得到如下频率分布表:
参加次数
0
1
2
3
人数
0.1
0.2
0.4
0.3
根据上表信息解答以下问题:
(1)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数在区间内有零点”的事件为,求发生的概率
(2)从该班级任选两名同学,用ξ表示这两人参加社会实践次数之差的绝对值,求随机变量ξ的分布列及数学期望

查看答案和解析>>

同步练习册答案