精英家教网 > 高中数学 > 题目详情
6.设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=$\frac{1}{x}$,g(x)=f(x)+f′(x).
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与g($\frac{1}{x}$)的大小关系.

分析 (1)由f(1)=0,且f′(x)=$\frac{1}{x}$可得f(x)=lnx,从而化简g(x)=f(x)+f′(x)=lnx+$\frac{1}{x}$,从而求导确定函数的单调性及最小值;
(2)构造F(x)=g(x)-g($\frac{1}{x}$)=lnx+$\frac{1}{x}$-(ln$\frac{1}{x}$+x)=2lnx+$\frac{1}{x}$-x,从而求导F′(x)=$\frac{2}{x}$-$\frac{1}{{x}^{2}}$-1=-$\frac{(x-1)^{2}}{{x}^{2}}$≤0,从而由函数的单调性判断大小关系.

解答 解:(1)∵f(1)=0,且f′(x)=$\frac{1}{x}$,
∴f(x)=lnx,
∴g(x)=f(x)+f′(x)=lnx+$\frac{1}{x}$,
g′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
故g(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
故gmin(x)=g(1)=1;
(2)令F(x)=g(x)-g($\frac{1}{x}$)=lnx+$\frac{1}{x}$-(ln$\frac{1}{x}$+x)=2lnx+$\frac{1}{x}$-x,
故F′(x)=$\frac{2}{x}$-$\frac{1}{{x}^{2}}$-1=-$\frac{(x-1)^{2}}{{x}^{2}}$≤0,
故F(x)=g(x)-g($\frac{1}{x}$)在(0,+∞)上是减函数,
且当x=1时,F(x)=0,即g(x)=g($\frac{1}{x}$),
故当0<x<1时,g(x)>g($\frac{1}{x}$);当x>1时,g(x)<g($\frac{1}{x}$).

点评 本题考查了导数的综合应用及构造函数判断大小关系的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知命题p:“存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$≥1”,则下列说法正确的是(  )
A.p是假命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命题;¬p“不存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$<1”
C.p是真命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命题;¬p“任意x∈(-∞,1),都有(log23)x<1”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列3个命题中,正确的个数为(  )
①命题“?x∈R,x2-1>0”的否定是“?x0∈R,x02-1≤0”;
②“p∧q为真”是“p∨q为真”的充分条件;
③“若p则q为真”是“若?q则?p为真”的充要条件.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=3e|x|.若存在实数t∈[-1,+∞),使得对任意的x∈[1,m],m∈Z且m>1,都有f(x+t)≤3ex,则m的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=-$\frac{1}{3}$x3+2ax2-3a2x+b(0<a<1)
(Ⅰ)求函数f(x)单调区间;
(Ⅱ)当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围;
(Ⅲ)当a=$\frac{2}{3}$时,关于x的方程f(x)=0在区间[1,3]上恒有两个相异的实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设各项均为正数的等比数列{an}中,a1+a3=10,a3+a5=40.设bn=log2an
(1)求数列{bn}的通项公式;     
(2)若c1=1,cn+1=cn+$\frac{b_n}{a_n}$,求证:cn<3.
(3)是否存在正整数k,使得$\frac{1}{{b}_{n}+1}$+$\frac{1}{{b}_{n}+2}$+…+$\frac{1}{{b}_{n+n}}$>$\frac{k}{10}$对任意正整数n均成立?若存在,求出k的最大值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时有f(x)=2x,则f(2015)=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),则实数a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在如图所示的正方形中随机掷一粒豆子,豆子落在该正方形内切圆的四分之一圆(如图阴影部分)中的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{16}$D.$\frac{π}{32}$

查看答案和解析>>

同步练习册答案