精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=3e|x|.若存在实数t∈[-1,+∞),使得对任意的x∈[1,m],m∈Z且m>1,都有f(x+t)≤3ex,则m的最大值为3.

分析 由题意可得x+t≥0,f(x+t)≤3ex,等价于t≤1+lnx-x.原命题等价转化为:存在实数t∈[-1,+∞),使得不等式t≤1+lnx-x对任意x∈[1,m]恒成立.再利用导数求得h(x)=1+lnx-x的最小值为h(x)min=h(m)=1+lnm-m,由此求得h(m)≥-1的最大整数m的值.

解答 解:当t∈[-1,+∞)且x∈[1,m]时,x+t≥0,
∴f(x+t)≤3ex可化为ex+t≤ex,
即t≤1+lnx-x;
∴存在实数t∈[-1,+∞),使得不等式t≤1+lnx-x对任意x∈[1,m]恒成立;
令h(x)=1+lnx-x(1≤x≤m);
∵h′(x)=$\frac{1}{x}$-1≤0,
∴函数h(x)在(0,+∞)为减函数;
又∵x∈[1,m],
∴h(x)min=h(m)=1+lnm-m.
∴要使得对x∈[1,m],t值恒存在,只须1+lnm-m≥-1;
∵h(3)=ln3-2>-1,h(4)=ln4-3<-1;
且函数h(x)在(0,+∞)为减函数,
∴满足条件的最大整数m的值为3.
故答案为:3.

点评 本题主要考查了函数的恒成立问题与存在性问题,利用导数研究函数的单调性,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=|x-2|-3.
(Ⅰ)若f(x)<0,求x的取值范围;
(Ⅱ)在(Ⅰ)的条件下,求g(x)=3$\sqrt{x+4}+4\sqrt{|x-6|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项和为Sn,且满足$2\sqrt{S_n}={a_n}+1$,n∈N*
(Ⅰ)求a1、a2的值,并求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}({a_n}+3)}}$,数列{bn}的前n项和为Tn,证明:${T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某程序框图如图所示,则执行该程序后输出的结果是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.圆台的母线长为2a,母线与轴的夹角为30°,一个底面圆的半径是另一个底面圆半径的2倍,则两底面圆的半径分别为a,2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若-4<x<1,研究函数f(x)=$\frac{{x}^{2}-2x+2}{2x-2}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=$\frac{1}{x}$,g(x)=f(x)+f′(x).
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与g($\frac{1}{x}$)的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C的方程;
(2)将上述圆C绕几点逆时针旋转$\frac{π}{2}$得到圆D,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知面积为$\frac{9\sqrt{3}}{2}$的△ABC中,∠A=$\frac{π}{3}$若点D为BC边上的一点,且满足$\overrightarrow{CD}$=$2\overrightarrow{DB}$,则当AD取最小时,BD的长为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案