精英家教网 > 高中数学 > 题目详情
4.下列3个命题中,正确的个数为(  )
①命题“?x∈R,x2-1>0”的否定是“?x0∈R,x02-1≤0”;
②“p∧q为真”是“p∨q为真”的充分条件;
③“若p则q为真”是“若?q则?p为真”的充要条件.
A.0B.1C.2D.3

分析 ①利用命题的否定即可判断出正误;
②利用复合命题真假的判定方法即可判断出正误;
③“若p则q为真”与“若?q则?p为真”互为逆否命题,即可判断出正误.

解答 解:①命题“?x∈R,x2-1>0”的否定是“?x0∈R,x02-1≤0”,正确;
②“p∧q为真”,则p与q都是真命题,因此“p∧q”是“p∨q为真”的充分条件,正确;
③“若p则q为真”是“若?q则?p为真”的充要条件,正确.
故正确命题的个数为:3.
故选:D.

点评 本题考查了简易逻辑的判定方法,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.等比数列{an}中,前n项和Sn=3n+r,则r=-1,公比q=3,通项公式an=2•3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设i是虚数单位,$\overline{z}$是复数z的共轭复数.若复数z满足(2-5i)$\overline{z}$=29,则z=(  )
A.2-5iB.2+5iC.-2-5iD.-2+5i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项和为Sn,且满足$2\sqrt{S_n}={a_n}+1$,n∈N*
(Ⅰ)求a1、a2的值,并求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}({a_n}+3)}}$,数列{bn}的前n项和为Tn,证明:${T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设a,b为正实数,则$\frac{a}{a+2b}+\frac{b}{a+b}$的最小值为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某程序框图如图所示,则执行该程序后输出的结果是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.圆台的母线长为2a,母线与轴的夹角为30°,一个底面圆的半径是另一个底面圆半径的2倍,则两底面圆的半径分别为a,2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=$\frac{1}{x}$,g(x)=f(x)+f′(x).
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与g($\frac{1}{x}$)的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一只正常的时钟,自零点开始到分针与时针再一次重合,分针所转过的角的弧度数是多少?

查看答案和解析>>

同步练习册答案