6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4-8sin2$\frac{¦È}{2}$£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+tcos¦È}\\{y=1+tsin¦È}\end{array}\right.$ £¨tΪ²ÎÊý£¬¦È¡Ê[0£¬¦Ð]£©£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬µãMµÄÖ±½Ç×ø±êΪ£¨2£¬1£©£¬Èô$\overrightarrow{MA}$=-2$\overrightarrow{MB}$£¬ÇóÖ±ÏßlµÄ²ÎÊý·½³Ì£®

·ÖÎö £¨1£©ÀûÓöþ±¶½Ç¹«Ê½»¯¼ò¼«×ø±ê·½³Ì£¬ÔÙ¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµµÃ³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏߵįÕͨ·½³ÌµÃ³ö¹ØÓÚ²ÎÊýµÄÒ»Ôª¶þ´Î·½³Ì£¬¸ù¾Ý²ÎÊýµÄ¼¸ºÎÒâÒåµÃ³öÁ½¸ù£¬Çó³ösin¦È£¬cos¦È£¬´Ó¶øÐ´³öÖ±ÏßlµÄ²ÎÊý·½³Ì£®

½â´ð ½â£º£¨1£©¡ß¦Ñ=4-8sin2$\frac{¦È}{2}$£¬¡à¦Ñ=4+4cos¦È-4=4cos¦È£¬¡à¦Ñ2=4¦Ñcos¦È£®
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4x£®
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßCµÄÆÕͨ·½³ÌµÃ£ºt2+2sin¦È•t-3=0£®
¡àt1t2=-3£¬t1+t2=-2sin¦È£®
¡ß$\overrightarrow{MA}$=-2$\overrightarrow{MB}$£¬¡àt1=-2t2£¬½âµÃt1=-$\sqrt{10}$£®t2=$\frac{\sqrt{10}}{2}$£¬»òt1=$\sqrt{10}$£¬t2=-$\frac{\sqrt{10}}{2}$£®
¡àt1+t2=¡À$\frac{\sqrt{10}}{2}$£®
¡à-2sin¦È=$¡À\frac{\sqrt{10}}{2}$£¬¡ß¦È¡Ê[0£¬¦Ð]£¬¡àsin¦È=$\frac{\sqrt{10}}{4}$£®
¡àcos¦È=$\frac{\sqrt{6}}{4}$»ò-$\frac{\sqrt{6}}{4}$£®
¡àÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{6}}{4}t}\\{y=1+\frac{\sqrt{10}}{4}t}\end{array}\right.$£¨tΪ²ÎÊý£©»ò$\left\{\begin{array}{l}{x=2-\frac{\sqrt{6}}{4}t}\\{y=1+\frac{\sqrt{10}}{4}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄת»¯£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒå¼°Ó¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÉèiΪÐéÊýµ¥Î»£¬¸´Êýz=$\frac{3-i}{i}$£¬ÔòzµÄ¹²éÊý$\overline{z}$=£¨¡¡¡¡£©
A£®-1-3iB£®1-3iC£®-1+3iD£®1+3i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¹ýË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄ½¹µãÇÒ´¹Ö±ÓÚʵÖáµÄÖ±Ïß½»Ë«ÇúÏߵĽ¥½üÏßÓÚA£¬BÁ½µã£¬ÒÑÖª|AB|µÈÓÚÐéÖ᳤µÄÁ½±¶£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{2}$B£®$\sqrt{3}$C£®$\sqrt{5}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪˫ÇúÏßC£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÒ»Ìõ½¥½üÏßÓëÖ±Ïß3x+$\sqrt{6}$y+3=0´¹Ö±£¬ÒÔCµÄÓÒ½¹µãFΪԲÐĵÄÔ²£¨x-c£©2+y2=2ÓëËüµÄ½¥½üÏßÏàÇУ¬ÔòË«ÇúÏߵĽ¹¾àΪ£¨¡¡¡¡£©
A£®4B£®2C£®$\sqrt{5}$D£®$2\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸´ÊýzÂú×ãz£¨2-i£©=|1+2i|£¬ÔòzµÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{5}$B£®$\frac{{\sqrt{5}}}{5}i$C£®1D£®i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÔ²C¾­¹ýA£¨5£¬1£©£¬B£¨1£¬3£©Á½µã£¬Ô²ÐÄÔÚxÖáÉÏ£¬ÔòÔ²CµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®£¨x-2£©2+y2=$\sqrt{10}$B£®£¨x+2£©2+y2=10C£®£¨x+2£©2+y2=$\sqrt{10}$D£®£¨x-2£©2+y2=10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚ¡÷ABCÖУ¬AB=AC£¬cos¡ÏABC=$\frac{1}{3}$£¬ÈôÒÔA£¬BΪ½¹µãµÄË«ÇúÏß¾­¹ýµãC£¬ÄÇô¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ºÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2-x-$\frac{5}{2}$£¬0¡Üx¡Üt+1£¬Çóf£¨x£©µÄ×î´óÖµ£¨ÆäÖÐt£¾0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¶ÔÓڵȱÈÊýÁÐ{an}µÄǰnÏîºÍSn£¨¡¡¡¡£©
A£®ÈÎÒâÒ»Ïî¶¼²»ÎªÁãB£®±ØÓÐÒ»ÏîΪÁã
C£®ÖÁ¶àÓÐÓÐÏÞÏîΪÁãD£®¿ÉÒÔÓÐÎÞÊýÏîΪÁã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸