精英家教网 > 高中数学 > 题目详情
14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线与直线3x+$\sqrt{6}$y+3=0垂直,以C的右焦点F为圆心的圆(x-c)2+y2=2与它的渐近线相切,则双曲线的焦距为(  )
A.4B.2C.$\sqrt{5}$D.$2\sqrt{5}$

分析 根据渐近线和直线垂直,得到a,b的关系,结合渐近线和圆相切得到a,b,c的方程,进行求解即可.

解答 解:直线3x+$\sqrt{6}$y+3=0的斜率k=-$\frac{3}{\sqrt{6}}$=-$\frac{\sqrt{6}}{2}$,
双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线方程为y=±$\frac{b}{a}$x,
∵双曲线C的一条渐近线与直线3x+$\sqrt{6}$y+3=0垂直,
∴-$\frac{\sqrt{6}}{2}$•$\frac{b}{a}$=-1,
即a=$\frac{\sqrt{6}}{2}$b,
∵C的右焦点F为圆心的圆(x-c)2+y2=2与它的渐近线相切,
∴圆心F(c,0)到渐近线bx-ay=0的距离d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{bc}{c}$=b=$\sqrt{2}$,
即a=$\frac{\sqrt{6}}{2}$b=$\frac{\sqrt{6}}{2}$×$\sqrt{2}$=$\sqrt{3}$,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{3+2}$=$\sqrt{5}$,
则双曲线的焦距为2c=$2\sqrt{5}$,
故选:D

点评 本题主要考查双曲线的方程和应用,根据直线垂直以及直线和圆相切建立方程关系进行求解是解决本题的关键.注意焦距是2c.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,x2<0;命题q:?x>2,log${\;}_{\frac{1}{2}}$x<0,则下列命题中为真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角系xOy中,已知中心在原点,对称轴为坐标轴,离心率e=$\frac{5}{4}$的双曲线C的一个焦点与抛物线y2=20x的焦点F重合,则双曲线C的方程为$\frac{x^2}{16}-\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,2),|$\overrightarrow{b}$|=5,$\overrightarrow{a}•\overrightarrow{b}$=5,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,则cosθ=(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{15}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.R表示实数集,集合M={x|0<x<2},N={x|x2+x-6≤0},则下列结论正确的是(  )
A.M∈NB.RM⊆NC.M∈∁RND.RN⊆∁RM

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=$\frac{1}{3}$,过F1的直线交椭圆于A,B两点,且△ABF2的周长为12.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E相切于点P,且与直线x=9相交于点Q,试探索以PQ为直径的圆是否恒过x轴上一定点?若是,请求出定点的坐标;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4-8sin2$\frac{θ}{2}$,直线l的参数方程为$\left\{\begin{array}{l}{x=2+tcosθ}\\{y=1+tsinθ}\end{array}\right.$ (t为参数,θ∈[0,π]).
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于A、B两点,点M的直角坐标为(2,1),若$\overrightarrow{MA}$=-2$\overrightarrow{MB}$,求直线l的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=2px的焦点坐标为(2,0),且过焦点的直线y=x-2与抛物线交于A、B两点,则△AOB的面积为8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等差数列{an},an=11-2n,求数列{|an|}的前n项和Tn

查看答案和解析>>

同步练习册答案