19£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF1£¬ÓÒ½¹µãΪF2£¬ÀëÐÄÂÊe=$\frac{1}{3}$£¬¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª12£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©É趯ֱÏßl£ºy=kx+mÓëÍÖÔ²EÏàÇÐÓÚµãP£¬ÇÒÓëÖ±Ïßx=9ÏཻÓÚµãQ£¬ÊÔ̽Ë÷ÒÔPQΪֱ¾¶µÄÔ²ÊÇ·ñºã¹ýxÖáÉÏÒ»¶¨µã£¿ÈôÊÇ£¬ÇëÇó³ö¶¨µãµÄ×ø±ê£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª12£¬¿ÉµÃ4a=12£¬¼´a=3£¬ÀûÓÃe=$\frac{1}{3}$£¬b2=a2-c2=8£¬¼´¿ÉÇóµÃÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{8{x}^{2}+9{y}^{2}=72}\end{array}\right.$£¬ÏûÔª¿ÉµÃ£¨9k2+8£©x2+18kmx+9m2-72=0£¬ÀûÓö¯Ö±Ïßl£ºy=kx+mÓëÍÖÔ²EÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãP£¨x0£¬y0£©£¬¿ÉµÃm¡Ù0£¬¡÷=0£¬½ø¶ø¿ÉµÃPµÄ×ø±ê£¬ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{x=9}\end{array}\right.$£¬¿ÉµÃQµÄ×ø±ê£¬È¡k=0£¬m=2$\sqrt{2}$£»k=-$\frac{1}{3}$£¬m=3£¬²ÂÏëÂú×ãÌõ¼þµÄµãM´æÔÚ£¬Ö»ÄÜÊÇM£¨1£¬0£©£¬ÔÙÓÉÏòÁ¿´¹Ö±µÄÌõ¼þÖ¤Ã÷¼´¿É£®

½â´ð ½â£º£¨1£©¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª12£®
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃAF1+AF2=BF1+BF2=2a£¬
¼´ÓС÷ABF2µÄÖܳ¤Îª4a=12£¬¿ÉµÃa=3£¬
ÓÉe=$\frac{c}{a}$=$\frac{1}{3}$£¬¿ÉµÃc=1£¬
¼´ÓÐb2=a2-c2=8£¬
ÔòÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1£»
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{8{x}^{2}+9{y}^{2}=72}\end{array}\right.$£¬Ïûy¿ÉµÃ£¨9k2+8£©x2+18kmx+9m2-72=0£¬
Óɶ¯Ö±Ïßl£ºy=kx+mÓëÍÖÔ²EÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãP£¨x0£¬y0£©£¬
¿ÉµÃm¡Ù0£¬¡÷=0£¬¼´Îª£¨18km£©2-4¡Á£¨9k2+8£©¡Á£¨9m2-72£©=0£¬
»¯Îª9k2-m2+8=0¢Ù
´Ëʱx0=-$\frac{9km}{9{k}^{2}+8}$=-$\frac{9k}{m}$£¬y0=$\frac{8}{m}$£¬
¼´P£¨-$\frac{9k}{m}$£¬$\frac{8}{m}$£©
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{x=9}\end{array}\right.$£¬µÃQ£¨9£¬9k+m£©£¬
È¡k=0£¬m=2$\sqrt{2}$£¬´ËʱP£¨0£¬2$\sqrt{2}$£©£¬Q£¨9£¬2$\sqrt{2}$£©£¬
ÒÔPQΪֱ¾¶µÄԲΪ£¨x-$\frac{9}{2}$£©2+£¨y-2$\sqrt{2}$£©2=$\frac{81}{4}$£¬
½»xÖáÓÚµãM1£¨1£¬0£©»òM2£¨8£¬0£©
È¡k=-$\frac{1}{3}$£¬m=3£¬´ËʱP£¨1£¬$\frac{8}{3}$£©£¬Q£¨9£¬0£©£¬
ÒÔPQΪֱ¾¶µÄԲΪ£¨x-5£©2+£¨y-$\frac{4}{3}$£©2=$\frac{160}{9}$£¬
½»xÖáÓÚµãM3£¨1£¬0£©»òM4£¨9£¬0£©£¬
¹ÊÈôÂú×ãÌõ¼þµÄµãM´æÔÚ£¬Ö»ÄÜÊÇM£¨1£¬0£©£¬Ö¤Ã÷ÈçÏÂ
ÓÉ$\overrightarrow{MP}$=£¨-$\frac{9k}{m}$-1£¬$\frac{8}{m}$£©£¬$\overrightarrow{MQ}$=£¨8£¬9k+m£©£¬
¿ÉµÃ$\overrightarrow{MP}$•$\overrightarrow{MQ}$=8£¨-$\frac{9k}{m}$-1£©+$\frac{8}{m}$£¨9k+m£©=0£¬
¹ÊÒÔPQΪֱ¾¶µÄÔ²ºã¹ýxÖáÉϵ͍µãM£¨1£¬0£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÅ×ÎïÏߵ͍ÒåÓëÐÔÖÊ¡¢Ô²µÄÖ±¾¶Ëù¶ÔµÄÔ²ÖܽÇΪֱ½Ç¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÔËËãÄÜÁ¦£¬¿¼²é»¯¹é˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÊµÊýx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}{x¡Ý1}\\{x+y¡Ü3}\\{-2x+3y+5¡Ý0}\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=x+2yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®5B£®4C£®-1D£®$\frac{16}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÉèÏòÁ¿$\overrightarrow{{e}_{1}}$£¬$\overrightarrow{{e}_{2}}$ÊÇÁ½¸ö»¥Ïà´¹Ö±µÄµ¥Î»ÏòÁ¿£¬ÇÒ$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$£¬$\overrightarrow{b}$=$\overrightarrow{{e}_{2}}$£¬Ôò|$\overrightarrow{a}$+2$\overrightarrow{b}$|=£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®$\sqrt{5}$C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖª±äÁ¿x£¬yÂú×ã$\left\{\begin{array}{l}{x-2y+4¡Ý0}\\{x¡Ü2}\\{x+y-2¡Ý0}\end{array}\right.$£¬Ôò$\frac{x+y}{x+2}$µÄ×î´óֵΪ$\frac{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪˫ÇúÏßC£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÒ»Ìõ½¥½üÏßÓëÖ±Ïß3x+$\sqrt{6}$y+3=0´¹Ö±£¬ÒÔCµÄÓÒ½¹µãFΪԲÐĵÄÔ²£¨x-c£©2+y2=2ÓëËüµÄ½¥½üÏßÏàÇУ¬ÔòË«ÇúÏߵĽ¹¾àΪ£¨¡¡¡¡£©
A£®4B£®2C£®$\sqrt{5}$D£®$2\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÏÂÁÐÃüÌâÊǼÙÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®?¦Õ¡ÊR£¬º¯Êýf£¨x£©=sin£¨2x+¦Õ£©¶¼²»ÊÇżº¯Êý
B£®?¦Á£¬¦Â¡ÊR£¬Ê¹cos£¨¦Á+¦Â£©=cos¦Á+cos¦Â
C£®ÏòÁ¿$\overrightarrow a$=£¨-2£¬1£©£¬$\overrightarrow b$=£¨-3£¬0£©£¬Ôò$\overrightarrow a$ÔÚ$\overrightarrow b$·½ÏòÉϵÄͶӰΪ2
D£®¡°|x|¡Ü1¡±ÊÇ¡°x£¼1¡±µÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÔ²C¾­¹ýA£¨5£¬1£©£¬B£¨1£¬3£©Á½µã£¬Ô²ÐÄÔÚxÖáÉÏ£¬ÔòÔ²CµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®£¨x-2£©2+y2=$\sqrt{10}$B£®£¨x+2£©2+y2=10C£®£¨x+2£©2+y2=$\sqrt{10}$D£®£¨x-2£©2+y2=10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®S=${C}_{27}^{1}$+${C}_{27}^{2}$+¡­+${C}_{27}^{27}$³ýÒÔ9µÄÓàÊýÊÇ£¨¡¡¡¡£©
A£®8B£®7C£®6D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èô½Ç¦ÁµÄÖÕ±ßÊÇÒ»´Îº¯Êýy=2x£¨x¡Ý0£©Ëù±íʾµÄÇúÏߣ¬Çósin2¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸