·ÖÎö £¨1£©¸ù¾Ý¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª12£¬¿ÉµÃ4a=12£¬¼´a=3£¬ÀûÓÃe=$\frac{1}{3}$£¬b2=a2-c2=8£¬¼´¿ÉÇóµÃÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{8{x}^{2}+9{y}^{2}=72}\end{array}\right.$£¬ÏûÔª¿ÉµÃ£¨9k2+8£©x2+18kmx+9m2-72=0£¬ÀûÓö¯Ö±Ïßl£ºy=kx+mÓëÍÖÔ²EÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãP£¨x0£¬y0£©£¬¿ÉµÃm¡Ù0£¬¡÷=0£¬½ø¶ø¿ÉµÃPµÄ×ø±ê£¬ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{x=9}\end{array}\right.$£¬¿ÉµÃQµÄ×ø±ê£¬È¡k=0£¬m=2$\sqrt{2}$£»k=-$\frac{1}{3}$£¬m=3£¬²ÂÏëÂú×ãÌõ¼þµÄµãM´æÔÚ£¬Ö»ÄÜÊÇM£¨1£¬0£©£¬ÔÙÓÉÏòÁ¿´¹Ö±µÄÌõ¼þÖ¤Ã÷¼´¿É£®
½â´ð
½â£º£¨1£©¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª12£®
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃAF1+AF2=BF1+BF2=2a£¬
¼´ÓС÷ABF2µÄÖܳ¤Îª4a=12£¬¿ÉµÃa=3£¬
ÓÉe=$\frac{c}{a}$=$\frac{1}{3}$£¬¿ÉµÃc=1£¬
¼´ÓÐb2=a2-c2=8£¬
ÔòÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1£»
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{8{x}^{2}+9{y}^{2}=72}\end{array}\right.$£¬Ïûy¿ÉµÃ£¨9k2+8£©x2+18kmx+9m2-72=0£¬
Óɶ¯Ö±Ïßl£ºy=kx+mÓëÍÖÔ²EÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãP£¨x0£¬y0£©£¬
¿ÉµÃm¡Ù0£¬¡÷=0£¬¼´Îª£¨18km£©2-4¡Á£¨9k2+8£©¡Á£¨9m2-72£©=0£¬
»¯Îª9k2-m2+8=0¢Ù
´Ëʱx0=-$\frac{9km}{9{k}^{2}+8}$=-$\frac{9k}{m}$£¬y0=$\frac{8}{m}$£¬
¼´P£¨-$\frac{9k}{m}$£¬$\frac{8}{m}$£©
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{x=9}\end{array}\right.$£¬µÃQ£¨9£¬9k+m£©£¬
È¡k=0£¬m=2$\sqrt{2}$£¬´ËʱP£¨0£¬2$\sqrt{2}$£©£¬Q£¨9£¬2$\sqrt{2}$£©£¬
ÒÔPQΪֱ¾¶µÄԲΪ£¨x-$\frac{9}{2}$£©2+£¨y-2$\sqrt{2}$£©2=$\frac{81}{4}$£¬
½»xÖáÓÚµãM1£¨1£¬0£©»òM2£¨8£¬0£©
È¡k=-$\frac{1}{3}$£¬m=3£¬´ËʱP£¨1£¬$\frac{8}{3}$£©£¬Q£¨9£¬0£©£¬
ÒÔPQΪֱ¾¶µÄԲΪ£¨x-5£©2+£¨y-$\frac{4}{3}$£©2=$\frac{160}{9}$£¬
½»xÖáÓÚµãM3£¨1£¬0£©»òM4£¨9£¬0£©£¬
¹ÊÈôÂú×ãÌõ¼þµÄµãM´æÔÚ£¬Ö»ÄÜÊÇM£¨1£¬0£©£¬Ö¤Ã÷ÈçÏÂ
ÓÉ$\overrightarrow{MP}$=£¨-$\frac{9k}{m}$-1£¬$\frac{8}{m}$£©£¬$\overrightarrow{MQ}$=£¨8£¬9k+m£©£¬
¿ÉµÃ$\overrightarrow{MP}$•$\overrightarrow{MQ}$=8£¨-$\frac{9k}{m}$-1£©+$\frac{8}{m}$£¨9k+m£©=0£¬
¹ÊÒÔPQΪֱ¾¶µÄÔ²ºã¹ýxÖáÉϵ͍µãM£¨1£¬0£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÅ×ÎïÏߵ͍ÒåÓëÐÔÖÊ¡¢Ô²µÄÖ±¾¶Ëù¶ÔµÄÔ²ÖܽÇΪֱ½Ç¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÔËËãÄÜÁ¦£¬¿¼²é»¯¹é˼Ï룬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5 | B£® | 4 | C£® | -1 | D£® | $\frac{16}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2$\sqrt{2}$ | B£® | $\sqrt{5}$ | C£® | 2 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | 2 | C£® | $\sqrt{5}$ | D£® | $2\sqrt{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ?¦Õ¡ÊR£¬º¯Êýf£¨x£©=sin£¨2x+¦Õ£©¶¼²»ÊÇżº¯Êý | |
| B£® | ?¦Á£¬¦Â¡ÊR£¬Ê¹cos£¨¦Á+¦Â£©=cos¦Á+cos¦Â | |
| C£® | ÏòÁ¿$\overrightarrow a$=£¨-2£¬1£©£¬$\overrightarrow b$=£¨-3£¬0£©£¬Ôò$\overrightarrow a$ÔÚ$\overrightarrow b$·½ÏòÉϵÄͶӰΪ2 | |
| D£® | ¡°|x|¡Ü1¡±ÊÇ¡°x£¼1¡±µÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨x-2£©2+y2=$\sqrt{10}$ | B£® | £¨x+2£©2+y2=10 | C£® | £¨x+2£©2+y2=$\sqrt{10}$ | D£® | £¨x-2£©2+y2=10 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 8 | B£® | 7 | C£® | 6 | D£® | 5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com