精英家教网 > 高中数学 > 题目详情
18.在△ABC中,AB=AC,cos∠ABC=$\frac{1}{3}$,若以A,B为焦点的双曲线经过点C,那么该双曲线的离心率为3.

分析 先确定C在双曲线的右支上,由双曲线定义知|BD|=$\frac{1}{2}$|BC|=$\frac{1}{2}$(2c-2a)=c-a,利用cos∠ABD=$\frac{1}{3}$,即$\frac{c-a}{2c}$=$\frac{1}{3}$,即可求出双曲线的离心率.

解答 解:不妨设A、B为左、右焦点,实半轴长为a,半焦距为c,
若点C在双曲线的左支上,设BC中点为D,
由定义知|BD|=$\frac{1}{2}$|BC|=$\frac{1}{2}$(2c+2a)=c+a,
在Rt△ABD中,由cos∠ABC=$\frac{1}{3}$,
故$\frac{c+a}{2c}$=$\frac{1}{3}$,不可能;
故C在双曲线的右支上,
设BC中点为D,由双曲线定义知|BD|=$\frac{1}{2}$(2c-2a)=c-a,
在Rt△ABD中,cos∠ABD=$\frac{1}{3}$,即$\frac{c-a}{2c}$=$\frac{1}{3}$,
可得c=3a,即有e=$\frac{c}{a}$=3.
故答案为:3.

点评 本题考查双曲线的离心率,注意运用双曲线的定义和等腰三角形的性质,确定C在双曲线的右支上是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设a=0.6${\;}^{\frac{1}{2}}$,b=0.5${\;}^{\frac{1}{4}}$,c=lg0.4,则(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.R表示实数集,集合M={x|0<x<2},N={x|x2+x-6≤0},则下列结论正确的是(  )
A.M∈NB.RM⊆NC.M∈∁RND.RN⊆∁RM

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4-8sin2$\frac{θ}{2}$,直线l的参数方程为$\left\{\begin{array}{l}{x=2+tcosθ}\\{y=1+tsinθ}\end{array}\right.$ (t为参数,θ∈[0,π]).
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于A、B两点,点M的直角坐标为(2,1),若$\overrightarrow{MA}$=-2$\overrightarrow{MB}$,求直线l的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,矩形ABCD中AD边的长为1,AB边的长为2,矩形ABCD位于第一象限,且顶点A,D分别位于x轴、y轴的正半轴上(含原点)滑动,则$\overrightarrow{OB}•\overrightarrow{OC}$的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=2px的焦点坐标为(2,0),且过焦点的直线y=x-2与抛物线交于A、B两点,则△AOB的面积为8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,如果sinA:sinB:sinC=6:7:9,则△ABC一定是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,a1=1,且anan+1+$\sqrt{3}$(an-an+1)+1=0,则a2016=(  )
A.1B.-1C.2+$\sqrt{3}$D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.作出下列函数的图象.
(1)y=|x-2|•(x+2);
(2)y=|log2(x+1)|;
(3)y=$\frac{2x-1}{x-1}$;
(4)y=x2-2|x|-1.

查看答案和解析>>

同步练习册答案