分析 先确定C在双曲线的右支上,由双曲线定义知|BD|=$\frac{1}{2}$|BC|=$\frac{1}{2}$(2c-2a)=c-a,利用cos∠ABD=$\frac{1}{3}$,即$\frac{c-a}{2c}$=$\frac{1}{3}$,即可求出双曲线的离心率.
解答 解:不妨设A、B为左、右焦点,实半轴长为a,半焦距为c,
若点C在双曲线的左支上,设BC中点为D,
由定义知|BD|=$\frac{1}{2}$|BC|=$\frac{1}{2}$(2c+2a)=c+a,
在Rt△ABD中,由cos∠ABC=$\frac{1}{3}$,
故$\frac{c+a}{2c}$=$\frac{1}{3}$,不可能;
故C在双曲线的右支上,
设BC中点为D,由双曲线定义知|BD|=$\frac{1}{2}$(2c-2a)=c-a,
在Rt△ABD中,cos∠ABD=$\frac{1}{3}$,即$\frac{c-a}{2c}$=$\frac{1}{3}$,
可得c=3a,即有e=$\frac{c}{a}$=3.
故答案为:3.
点评 本题考查双曲线的离心率,注意运用双曲线的定义和等腰三角形的性质,确定C在双曲线的右支上是关键.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∈N | B. | ∁RM⊆N | C. | M∈∁RN | D. | ∁RN⊆∁RM |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 钝角三角形 | B. | 直角三角形 | C. | 锐角三角形 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2+$\sqrt{3}$ | D. | 2-$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com