精英家教网 > 高中数学 > 题目详情
3.已知抛物线C:y2=6x的焦点为F,B为C的准线上一点,A为直线BF与C的一个交点,若$\overrightarrow{FB}$=3$\overrightarrow{FA}$,则点A到原点的距离为$\frac{\sqrt{13}}{2}$.

分析 求得抛物线的焦点和准线方程,设B(-$\frac{3}{2}$,m),A(s,t),运用向量共线的坐标表示,解方程可得A的坐标,由两点的距离公式计算即可得到所求值.

解答 解:y2=6x的焦点为F($\frac{3}{2}$,0),准线方程为x=-$\frac{3}{2}$,
设B(-$\frac{3}{2}$,m),A(s,t),由$\overrightarrow{FB}$=3$\overrightarrow{FA}$,可得-$\frac{3}{2}$-$\frac{3}{2}$=3(s-$\frac{3}{2}$),
解得s=$\frac{1}{2}$,t=±$\sqrt{3}$,
即有|OA|=$\sqrt{\frac{1}{4}+3}$=$\frac{\sqrt{13}}{2}$.
故答案为:$\frac{\sqrt{13}}{2}$.

点评 本题考查两点的距离公式的运用,考查抛物线的焦点和准线方程,以及向量共线的坐标表示,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.解关于x的不等式:x2-(a+a2)x+a3>0(a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-bx2+4x(b∈R)在x=2处取得极值.
(Ⅰ)求b的值;
(Ⅱ)求f(x)在区间[0,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x3-$\frac{3}{2}$x2+3在区间[-1,1]上的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3-3x2+x的极大值为m,极小值为n,则m+n=(  )
A.0B.2C.-4D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆(x+1)2+y2=4与抛物线y2=mx(m≠0)的准线交于A、B两点,且$|AB|=2\sqrt{3}$,则m的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\frac{1}{2}$sin2x+acosx在(0,π)上是增函数,则实数a的取值范围为(  )
A.[-1,+∞)B.(-∞,-1]C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个几何体的三视图如图所示,它的外接球的表面积为32π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{1}{{2-{a_n}}}(n∈{N^*})$
(1)求a2,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案