14£®Ìá¸ßÎå°®ËíµÀµÄ³µÁ¾Í¨ÐÐÄÜÁ¦¿É¸ÄÉÆ¸½½ü·¶Î¸ß·åÆÚ¼äµÄ½»Í¨×´¿ö£¬ÏÖ½«ËíµÀÄڵijµÁ÷ËٶȼÇ×÷¦Ô£¨µ¥Î»£ºÇ§Ã×/Сʱ£©£¬³µÁ÷ÃܶȼÇ×÷x£¨µ¥Î»£ºÁ¾/ǧÃ×£©£®Ñо¿±íÃ÷£ºµ±ËíµÀÄڵijµÁ÷Ãܶȴﵽ180Á¾/ǧÃ×ʱ£¬»áÔì³É¸Ã·¶ÎµÀ·¶ÂÈû£¬´Ëʱ³µÁ÷ËÙ¶ÈΪ0ǧÃ×/Сʱ£»µ±³µÁ÷ÃܶȲ»³¬¹ý30Á¾/ǧÃ×ʱ£¬³µÁ÷ËÙ¶ÈΪ50ǧÃ×/Сʱ£»µ±30¡Üx¡Ü180ʱ£¬³µÁ÷ËٶȦÔÊdzµÁ÷ÃܶÈxµÄÒ»´Îº¯Êý£®
£¨¢ñ£©µ±0£¼x¡Ü180ʱ£¬Çóº¯Êý¦Ô£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©µ±³µÁ÷ÃܶÈxΪ¶àÉÙʱ£¬³µÁ÷Á¿£¨µ¥Î»Ê±¼äÄÚͨ¹ýËíµÀÄÚij¹Û²âµãµÄ³µÁ¾Êý£¬µ¥Î»£ºÁ¾/Сʱ£©f£¨x£©=x•¦Ô£¨x£©¿ÉÒÔ´ïµ½×î´ó£¬²¢Çó³ö×î´óÖµ£®

·ÖÎö £¨I£©¸ù¾ÝÌâÒ⣬º¯Êýv£¨x£©±í´ïʽΪ·Ö¶Îº¯ÊýµÄÐÎʽ£¬¹Ø¼üÔÚÓÚÇóº¯Êýv£¨x£©ÔÚ30¡Üx¡Ü180ʱµÄ±í´ïʽ£¬¸ù¾ÝÒ»´Îº¯Êý±í´ïʽµÄÐÎʽ£¬Óôý¶¨ÏµÊý·¨¿ÉÇóµÃ£»
£¨II£©ÓÉ£¨¢ñ£©¿ÉÖªº¯Êýf£¨x£©µÄ±í´ïʽ£¬·Ö¶ÎÇó×îÖµ£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâÖª£¬µ±0¡Üx¡Ü30ʱ£¬v£¨x£©=50£»
µ±30¡Üx¡Ü180ʱ£¬Éèv£¨x£©=ax+b£¬
ÓÉÒÑÖª¿ÉµÃ$\left\{\begin{array}{l}{180a+b=0}\\{30a+b=50}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{3}}\\{b=60}\end{array}\right.$£®
ËùÒÔº¯Êý¦Ô£¨x£©=$\left\{\begin{array}{l}{50£¬}&{0£¼x£¼30}\\{-\frac{1}{3}x+60£¬}&{30¡Üx¡Ü180}\end{array}\right.$
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖªf£¨x£©=$\left\{\begin{array}{l}{50x£¬}&{0£¼x£¼30}\\{-\frac{1}{3}{x}^{2}+60x£¬}&{30¡Üx¡Ü180}\end{array}\right.$
µ±0¡Üx¡Ü30ʱ£¬f£¨x£©=50xΪÔöº¯Êý£¬
¡àµ±x=30ʱ£¬Æä×î´óֵΪ1500£®
µ±30¡Üx¡Ü180ʱ£¬f£¨x£©=-$\frac{1}{3}$x2+60x=-$\frac{1}{3}$£¨x-90£©2+2700£¬
µ±x=90ʱ£¬Æä×î´óֵΪ2700£¬
×ÛÉÏ£¬µ±³µÁ÷ÃܶÈΪ90Á¾/ǧÃ×ʱ£¬³µÁ÷Á¿×î´ó£¬×î´óֵΪ2700Á¾£®

µãÆÀ ±¾Ìâ¸ø³ö³µÁ÷ÃܶȵÄʵ¼ÊÎÊÌ⣬Çó³µÁ÷Á¿µÄ×î´óÖµ¼°ÏàÓ¦µÄ³µÁ÷Ãܶȣ¬×ÅÖØ¿¼²éÁ˺¯Êý¡¢×îÖµµÈ»ù´¡ÖªÊ¶£¬Í¬Ê±¿¼²éÔËÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Çóº¯Êýf£¨x£©=$\sqrt{2{x}^{2}-x+3}$+$\sqrt{{x}^{2}-x}$µÄ×îСֵ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬A=60¡ã£¬b=2£¬S¡÷ABC=2$\sqrt{3}$£¬Ôòa=2$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª£¨$\sqrt{x}-\root{3}{x}$£©nµÄÕ¹¿ªÊ½ÖÐËùÓÐÏîµÄ¶þÏîʽϵÊýÖ®ºÍΪ1024£®
£¨1£©ÇóÕ¹¿ªÊ½µÄËùÓÐÓÐÀíÊý£¨Ö¸ÊýΪÕûÊý£©£»
£¨2£©Çó£¨1-x£©6+£¨1-x£©7+¡­+£¨1-x£©nÕ¹¿ªÊ½ÖÐx2ÏîµÄϵÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÉèFΪÅ×ÎïÏßC£ºy2=4xµÄ½¹µã£¬¹ýFÇÒÇãб½ÇΪ45¡ãµÄÖ±Ïß½»CÓÚA£¬BÁ½µã£¬Ôò|AB|=£¨¡¡¡¡£©
A£®7B£®8C£®9D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èô²»µÈʽ0¡Üx2-ax+a¡Ü1ÓÐΨһ½â£¬ÔòaµÄȡֵΪ£¨¡¡¡¡£©
A£®0B£®6C£®4D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬F1¡¢F2ΪÆä×ó¡¢ÓÒ½¹µã£¬¹ýF1µÄÖ±Ïßl½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬¡÷F1AF2µÄÖܳ¤Îª$2£¨\sqrt{2}+1£©$£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Çó¡÷AOBÃæ»ýµÄ×î´óÖµ£¨OÎª×ø±êÔ­µã£©£»
£¨3£©Ö±ÏßmÒ²¹ýF1ÓëÇÒÓëÍÖÔ²½»ÓÚC¡¢DÁ½µã£¬ÇÒl¡Ím£¬ÉèÏß¶ÎAB¡¢CDµÄÖеã·Ö±ðΪM¡¢NÁ½µã£¬ÊÔÎÊ£ºÖ±ÏßMNÊÇ·ñ¹ý¶¨µã£¿ÈôÊÇ£¬Çó³ö¶¨µã×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬¡÷ABCÊDZ߳¤Îª2µÄÕýÈý½ÇÐΣ¬AE¡ÍÆ½ÃæABC£¬ÇÒAE=1£¬ÓÖÆ½ÃæBCD¡ÍÆ½ÃæABC£¬ÇÒBD=CD£¬BD¡ÍCD£®
£¨1£©ÇóÖ¤£ºAE¡ÎÆ½ÃæBCD£»
£¨2£©ÇóÖ¤£ºÆ½ÃæBDE¡ÍÆ½ÃæCDE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªm£¬nÊDz»Í¬µÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦ÃÊDz»Í¬µÄÆ½Ãæ£¬ÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô¦Á¡Í¦Â£¬¦Á¡É¦Â=m£¬m¡Ín£¬Ôòn¡Í¦Á£¬n¡Í¦Â
B£®Èô¦Á¡Î¦Â£¬¦Á¡É¦Ã=m£¬¦Â¡É¦Ã=n£¬Ôòm¡În
C£®Èôm²»´¹Ö±ÓÚ¦Á£¬Ôòm²»¿ÉÄÜ´¹Ö±ÓÚ¦ÁÄÚµÄÎÞÊýÌõÖ±Ïß
D£®Èô¦Á¡É¦Â=m£¬n¡Îm£¬Ôòn¡Î¦Á£¬ÇÒn¡Î¦Â

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸