精英家教网 > 高中数学 > 题目详情
3.如图,△ABC是边长为2的正三角形,AE⊥平面ABC,且AE=1,又平面BCD⊥平面ABC,且BD=CD,BD⊥CD.
(1)求证:AE∥平面BCD;
(2)求证:平面BDE⊥平面CDE.

分析 (1)取BC的中点M,连接DM、AM,证明AE∥DM,通过直线与平面平行的判定定理证明AE∥平面BCD.
(2)证明DE∥AM,DE⊥CD.利用直线与平面垂直的判定定理证明CD⊥平面BDE.然后证明平面BDE⊥平面CDE.

解答 证明:(1)取BC的中点M,连接DM、AM,
因为BD=CD,且BD⊥CD,BC=2,…(2分)
所以DM=1,DM⊥BC,AM⊥BC,…(3分)
又因为平面BCD⊥平面ABC,
所以DM⊥平面ABC,所以AE∥DM,…(6分)
又因为AE?平面BCD,DM?平面BCD,…(7分)
所以AE∥平面BCD.…(8分)
(2)由(1)已证AE∥DM,又AE=1,DM=1,
所以四边形DMAE是平行四边形,所以DE∥AM.…(10分)
由(1)已证AM⊥BC,又因为平面BCD⊥平面ABC,
所以AM⊥平面BCD,所以DE⊥平面BCD.
又CD?平面BCD,所以DE⊥CD.…(12分)
因为BD⊥CD,BD∩DE=D,所以CD⊥平面BDE.
因为CD?平面CDE,所以平面BDE⊥平面CDE.…(14分)

点评 本题考查平面与平面垂直的判定定理的应用,直线与平面平行与垂直的判定定理的应用,考查空间想象能力逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.过点M(-1,1)作斜率为$\frac{1}{2}$的直线与椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.提高五爱隧道的车辆通行能力可改善附近路段高峰期间的交通状况,现将隧道内的车流速度记作υ(单位:千米/小时),车流密度记作x(单位:辆/千米).研究表明:当隧道内的车流密度达到180辆/千米时,会造成该路段道路堵塞,此时车流速度为0千米/小时;当车流密度不超过30辆/千米时,车流速度为50千米/小时;当30≤x≤180时,车流速度υ是车流密度x的一次函数.
(Ⅰ)当0<x≤180时,求函数υ(x)的表达式;
(Ⅱ)当车流密度x为多少时,车流量(单位时间内通过隧道内某观测点的车辆数,单位:辆/小时)f(x)=x•υ(x)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{x-3}{x+2}$≤0的解集为(  )
A.{x|-2<x≤3}B.{x|-2≤x≤3}C.{x|x<-2或x>3}D.{x|-2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=f(x)的图象如图所示,则以下描述正确的是(  )
A.函数f(x)的定义域为[-4,4)
B.函数f(x)的值域为[0,5]
C.此函数在定义域内既不是增函数也不是减函数
D.对于任意的y∈[0,+∞),都有唯一的自变量x与之对应

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=sin ax+$\sqrt{3}$cos ax(a>0)的最小正周期为2,则函数f(x)的一个零点为(  )
A.-$\frac{π}{3}$B.$\frac{2}{3}$C.($\frac{2}{3}$,0)D.(0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,给出下列四个函数:
①f(x)=sin$\frac{π}{2}$x;②f(x)=2x2-1;③f(x)=|1-2x|;④f(x)=log2(2x-2).
其中存在“可等域区间”的“可等域函数”为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.m,n为实数,命题p:m+n>2;命题q:m>1且n>1,则p是q的(  )
A.充分不必要的条件B.必要不充分的条件
C.充要条件D.既不充分也不必要的条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xeax(x∈R)
(Ⅰ)若a=1,求函数y=f(x)在x=0处的切线方程;
(Ⅱ)若a=-1,求函数y=f(x)的单调区间和极值;
(Ⅲ)若a=-1,且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,求证:当x>1时,f(x)>g(x).

查看答案和解析>>

同步练习册答案