精英家教网 > 高中数学 > 题目详情
11.不等式$\frac{x-3}{x+2}$≤0的解集为(  )
A.{x|-2<x≤3}B.{x|-2≤x≤3}C.{x|x<-2或x>3}D.{x|-2<x<3}

分析 将分式不等式转化为整式不等式即可得到结论.

解答 解:不等式$\frac{x-3}{x+2}$≤0?(x-3)(x+2)≤0,且x+2≠0,
解得-2<x≤3,
故选:A

点评 本题主要考查分式不等式的解法,将分式不等式转化为整式不等式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知动点P(x,y)在椭圆$\frac{x^2}{100}+\frac{y^2}{64}$=1上,若A点的坐标为(6,0),|${\overrightarrow{AM}}$|=1,且$\overrightarrow{PM}$•$\overrightarrow{AM}$=0,则|${\overrightarrow{PM}}$|的最小值为$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知($\sqrt{x}-\root{3}{x}$)n的展开式中所有项的二项式系数之和为1024.
(1)求展开式的所有有理数(指数为整数);
(2)求(1-x)6+(1-x)7+…+(1-x)n展开式中x2项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若不等式0≤x2-ax+a≤1有唯一解,则a的取值为(  )
A.0B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,F1、F2为其左、右焦点,过F1的直线l交椭圆于A、B两点,△F1AF2的周长为$2(\sqrt{2}+1)$.
(1)求椭圆的标准方程;
(2)求△AOB面积的最大值(O为坐标原点);
(3)直线m也过F1与且与椭圆交于C、D两点,且l⊥m,设线段AB、CD的中点分别为M、N两点,试问:直线MN是否过定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线a不平行于平面α,则下列结论成立的是(  )
A.α内所有的直线都与a异面B.α内不存在与a平行的直线
C.α内所有的直线都与a相交D.直线a与平面α有公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,△ABC是边长为2的正三角形,AE⊥平面ABC,且AE=1,又平面BCD⊥平面ABC,且BD=CD,BD⊥CD.
(1)求证:AE∥平面BCD;
(2)求证:平面BDE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对具有线性相关关系的变量x,y测得一组数据如下表:
x24568
y2040607080
根据上表,利用最小二乘法得他们的回归直线方程为$\widehat{y}$=10.5x+$\widehat{a}$,据此模型来预测当x=20时,y的估计值为(  )
A.210B.211.5C.212D.212.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U={1,2,3,4,5,6,7,8},A={1,4,8},B={3,4,7},则(∁UA)∩B=(  )
A.{4}B.{3,4,7}C.{3,7}D.

查看答案和解析>>

同步练习册答案