精英家教网 > 高中数学 > 题目详情
19.若不等式0≤x2-ax+a≤1有唯一解,则a的取值为(  )
A.0B.6C.4D.2

分析 结合二次函数的性质知,不等式0≤x2-ax+a≤1有唯一解可化为x2-ax+a=1有唯一解,从而解得.

解答 解:∵不等式0≤x2-ax+a≤1有唯一解,
∴x2-ax+a=1有唯一解,
即△=a2-4(a-1)=0;
即a2-4a+4=0,
解得,a=2,
故选:D.

点评 本题考查了二次函数与二次不等式的关系应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的点均在C2:(x-1)2+y2=$\frac{1}{4}$外,且对C1上任意一点M,M到直线x=-$\frac{1}{2}$的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程;
(2)已知直线l过定点P(-2,1),斜率为k,当 k为何值时,直线l与曲线C1只有一个公共点点;有两个公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x∈(-$\frac{π}{2}$,0),cos2$\frac{x}{2}$-sin2$\frac{x}{2}$=$\frac{4}{5}$,则tan2x等于(  )
A.$\frac{7}{24}$B.-$\frac{7}{24}$C.$\frac{24}{7}$D.-$\frac{24}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-c,0),F2(c,0),且椭圆上存在点P使得直线PF1与直线PF2垂直.
(1)求椭圆离心率e的取值范围;
(2)若直线PF1与椭圆的另一个交点为Q,当e=$\frac{\sqrt{2}}{2}$,且|QF2|=5$\sqrt{2}$时,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.提高五爱隧道的车辆通行能力可改善附近路段高峰期间的交通状况,现将隧道内的车流速度记作υ(单位:千米/小时),车流密度记作x(单位:辆/千米).研究表明:当隧道内的车流密度达到180辆/千米时,会造成该路段道路堵塞,此时车流速度为0千米/小时;当车流密度不超过30辆/千米时,车流速度为50千米/小时;当30≤x≤180时,车流速度υ是车流密度x的一次函数.
(Ⅰ)当0<x≤180时,求函数υ(x)的表达式;
(Ⅱ)当车流密度x为多少时,车流量(单位时间内通过隧道内某观测点的车辆数,单位:辆/小时)f(x)=x•υ(x)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的首项a1=1,前n项和为Sn,且S1,$\frac{1}{2}{S_3},\frac{1}{3}{S_5}$成等差数列.
(1)求数列{an}的通项公式;
( 2)若数列{bn}为递增的等比数列,且集合{b1,b2,b3}⊆{a1,a2,a3,a4,a5},设数列{an•bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{x-3}{x+2}$≤0的解集为(  )
A.{x|-2<x≤3}B.{x|-2≤x≤3}C.{x|x<-2或x>3}D.{x|-2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=sin ax+$\sqrt{3}$cos ax(a>0)的最小正周期为2,则函数f(x)的一个零点为(  )
A.-$\frac{π}{3}$B.$\frac{2}{3}$C.($\frac{2}{3}$,0)D.(0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.要得到函数y=cos(2x+1)的图象,可以将函数y=cos(2x-1)的图象(  )
A.向左平移1个单位B.向右平移1个单位C.向左平移2个单位D.向右平移2个单位

查看答案和解析>>

同步练习册答案