分析 (1)由△PF1F2是直角三角形,可得以F1F2为直径的圆与椭圆有交点,可得c≥b,利用a,b,c的关系及其离心率计算公式即可得出.
(2)由e=$\frac{\sqrt{2}}{2}$,可得b=c,点P(0,b),因此直线PQ方程为:y=x+c,则椭圆的方程为$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$,联立解得Q$(-\frac{4}{3}c,-\frac{1}{3}c)$.利用|QF2|=$5\sqrt{2}$,解得c即可得出.
解答 解:(1)∵△PF1F2是直角三角形,
∴以F1F2为直径的圆与椭圆有交点,∴c≥b,
∴c2≥a2-c2,解得$\frac{\sqrt{2}}{2}≤\frac{c}{a}$,又$\frac{c}{a}$<1,
∴e∈$[\frac{\sqrt{2}}{2},1)$.
(2)由e=$\frac{\sqrt{2}}{2}$,∴a2=2c2,b=c.
∴|OP|=b,
设点P(0,b),直线PQ的斜率k=1,设直线PQ的方程为:y=x+c,
则椭圆的方程为$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$,联立$\left\{\begin{array}{l}{y=x+c}\\{{x}^{2}+2{y}^{2}=2{c}^{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=0}\\{y=c}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-\frac{4}{3}c}\\{y=-\frac{1}{3}c}\end{array}\right.$,
∴Q$(-\frac{4}{3}c,-\frac{1}{3}c)$.
∴|QF2|=$\sqrt{(c+\frac{4}{3}c)^{2}+(\frac{1}{3}c)^{2}}$=$5\sqrt{2}$,解得c=3,
∴b=3,a2=18,
∴椭圆的方程为:$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{9}=1$.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆及圆的相交问题、两点之间的距离公式等基础知识与基本技能,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α内所有的直线都与a异面 | B. | α内不存在与a平行的直线 | ||
| C. | α内所有的直线都与a相交 | D. | 直线a与平面α有公共点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com