精英家教网 > 高中数学 > 题目详情
12.已知f(x)=$\left\{\begin{array}{l}{2^x}+3,x≤0\\{(x-2)^2},x>0\end{array}$在区间(m2-4m,2m-2)上能取得最大值,则实数m的取值范围为(1,3].

分析 作函数f(x)=$\left\{\begin{array}{l}{2^x}+3,x≤0\\{(x-2)^2},x>0\end{array}$的图象,结合图象及指数函数与二次函数的性质可得$\left\{\begin{array}{l}{{m}^{2}-4m<0}\\{0<2m-2≤4}\end{array}\right.$,从而解得.

解答 解:作函数f(x)=$\left\{\begin{array}{l}{2^x}+3,x≤0\\{(x-2)^2},x>0\end{array}$的图象如下,

结合图象可知,
$\left\{\begin{array}{l}{{m}^{2}-4m<0}\\{0<2m-2≤4}\end{array}\right.$;
解得,1<m≤3;
故实数m的取值范围为(1,3];
故答案为:(1,3].

点评 本题考查了基本初等函数的图象的作法及数形结合的应用,同时考查了函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2. 如图程序框图,当输出的任何一个确定的y值时恰好只对应输入唯一的x值,则这是输出的y值的范围是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与双曲线C:$\frac{{x}^{2}}{12}-\frac{{y}^{2}}{4}$=1共焦点,且过点(0,3)的椭圆的离心率为(  )
A.$\frac{2\sqrt{34}}{17}$B.$\frac{\sqrt{6}}{3}$C.$\frac{4\sqrt{7}}{7}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}和{bn}满足a1a2…an=${2}^{{b}_{n}-n}$,若{an}为等比数列,且a1=1,b2=b1+2
(Ⅰ)求an与bn
(Ⅱ)设cn=$\frac{1}{{a}_{n}}+\frac{1}{{b}_{n}}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-c,0),F2(c,0),且椭圆上存在点P使得直线PF1与直线PF2垂直.
(1)求椭圆离心率e的取值范围;
(2)若直线PF1与椭圆的另一个交点为Q,当e=$\frac{\sqrt{2}}{2}$,且|QF2|=5$\sqrt{2}$时,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点,且△ABF2的周长为8$\sqrt{2}$,圆N:x2+(y-1)2=1在椭圆M内部,且与其相切.
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N的任意一条直径(E、F为直径的两个端点),求$\overrightarrow{PE}$•$\overrightarrow{PF}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的首项a1=1,前n项和为Sn,且S1,$\frac{1}{2}{S_3},\frac{1}{3}{S_5}$成等差数列.
(1)求数列{an}的通项公式;
( 2)若数列{bn}为递增的等比数列,且集合{b1,b2,b3}⊆{a1,a2,a3,a4,a5},设数列{an•bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,直线2x-y-4=0与直线y=x-1的交点为M,过点A(0,3)作直线l,使得点M到直线l的距离为1.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直线坐标系xOy中,给定一点P(3,1)及两条直线l1:x+2y+3=0,l2:x+2y-7=0.
(Ⅰ)求直线l1和l2距离相等的直线方程;
(Ⅱ)求过P点且与l1,l2都相切的圆的方程.

查看答案和解析>>

同步练习册答案