精英家教网 > 高中数学 > 题目详情
2. 如图程序框图,当输出的任何一个确定的y值时恰好只对应输入唯一的x值,则这是输出的y值的范围是[0,+∞).

分析 分析程序框图可知其功能是求分段函数y=$\left\{\begin{array}{l}{1{+log}_{2}^{x}}&{x≥2}\\{|x-1|}&{x<2}\end{array}\right.$的值.

解答 解:由程序框图可知其功能是求分段函数y=$\left\{\begin{array}{l}{1{+log}_{2}^{x}}&{x≥2}\\{|x-1|}&{x<2}\end{array}\right.$的值,
当x≥2时,y≥1+log22=2,
当x<2时,y≥0,
∴输出的y值的范围是[0,+∞).
故答案为:[0,+∞).

点评 本题考查了分段函数的性质、算法与程序框图的应用,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知点M,N分别是直线x+y+1=0与圆(x-1)2+(y-1)2=2上的动点,则|MN|的最小值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的一条对称轴为直线x=$\frac{π}{8}$.
(1)求φ;
(2)求单调区间;
(3)求f(x)在[0,$\frac{π}{2}$)上的最值;
(4)如何将sinx图象变换成y=f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,sin2A=sinBsinC,∠A=$\frac{π}{3}$,则∠B等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)为奇函数,当x<0时,f(x)=log2(1-x),则f(3)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F1,F2是椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1的两个焦点,过F1的直线与椭圆C交于M,N两点,则△F2MN的周长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若椭圆M1:$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{{b}_{1}^{2}}$=1(a1>b1>0)和椭圆M2:$\frac{{x}^{2}}{{a}_{2}^{2}}$+$\frac{{y}^{2}}{{b}_{2}^{2}}$=1(a2>b2>0)的长轴长相等,c1、c2分别为它们的半焦距,且b1>b2.给出下列五个命题,其中为真命题的是②④⑤(写出所有真命题的序号)
①设椭圆的离心率为e,则e1>e2;②b12-b22=c22-c12;③b2c1>b1c2
④设椭圆M1的焦点F1、F2,P1为椭圆M1上的任意一点,椭圆M2的焦点F3、F4,P2为椭圆M2上的任意一点,则∠F1P1F2和∠F3P2F4都取最大角时,∠F1P1F2<∠F3P2F4
⑤若称椭圆上的点与焦点之间的线段之间的线段长度为焦半径,则椭圆M1的最短的焦半径比椭圆M2的最短的焦半径要长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0)经过点P(${\frac{{\sqrt{6}}}{2}$,$\frac{1}{2}}$),离心率为$\frac{{\sqrt{2}}}{2}$,动点 M(2,t)(t>0).
(1)求椭圆的标准方程;
(2)求以 O M( O为坐标原点)为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作 O M的垂线与以 O M为直径的圆交于点 N,证明线段 O N的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=$\left\{\begin{array}{l}{2^x}+3,x≤0\\{(x-2)^2},x>0\end{array}$在区间(m2-4m,2m-2)上能取得最大值,则实数m的取值范围为(1,3].

查看答案和解析>>

同步练习册答案