| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
分析 利用三角形的内角和定理及诱导公式得到cosA=-cos(B+C),再利用两角和与差的余弦函数公式化简,把A的度数代入已知等式求出sinBsinC的值,代入计算求出cosBcosC的值,再利用两角和与差的余弦函数公式求出cos(B-C)的值,进而得到∠B=∠C,即可求出∠B的度数.
解答 解:∵在△ABC中,sin2A=sinBsinC,∠A=$\frac{π}{3}$,
∴cosA=-cos(B+C)=-cosBcosC+sinBsinC=-cosBcosC+sin2A=-cosBcosC+$\frac{3}{4}$=$\frac{1}{2}$,
∴cosBcosC=$\frac{1}{4}$,
∵sinBsinC=$\frac{3}{4}$,
∴cos(B-C)=cosBcosC+sinBsinC=1,即∠B-∠C=0,
∴∠B=∠C=$\frac{π}{3}$,
故选:B.
点评 此题考查了正弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\overline{{X}_{甲}}$<$\overline{{X}_{乙}}$,乙比甲成绩稳定 | B. | $\overline{{X}_{甲}}$<$\overline{{X}_{乙}}$,甲比乙成绩稳定 | ||
| C. | $\overline{{X}_{甲}}$>$\overline{{X}_{乙}}$,甲比乙成绩稳定 | D. | $\overline{{X}_{甲}}$>$\overline{{X}_{乙}}$,乙比甲成绩稳定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | 4 | C. | $\frac{4}{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com