11£®ÒÑÖªÍÖÔ²$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1£¨a£¾b£¾0£©¾­¹ýµãP£¨${\frac{{\sqrt{6}}}{2}$£¬$\frac{1}{2}}$£©£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬¶¯µã M£¨2£¬t£©£¨t£¾0£©£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÇóÒÔ O M£¨ OÎª×ø±êÔ­µã£©ÎªÖ±¾¶ÇÒ±»Ö±Ïß3x-4y-5=0½ØµÃµÄÏÒ³¤Îª2µÄÔ²µÄ·½³Ì£»
£¨3£©ÉèFÊÇÍÖÔ²µÄÓÒ½¹µã£¬¹ýµãF×÷ O MµÄ´¹ÏßÓëÒÔ O MΪֱ¾¶µÄÔ²½»ÓÚµã N£¬Ö¤Ã÷Ïß¶Î O NµÄ³¤Îª¶¨Öµ£¬²¢Çó³öÕâ¸ö¶¨Öµ£®

·ÖÎö £¨1£©°Ñµã$P£¨\;\frac{{\sqrt{6}}}{2}\;£¬\;\frac{1}{2}\;£©$´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{{{{£¨\;\frac{{\sqrt{6}}}{2}\;£©}^2}}}{a^2}+\frac{{{{£¨\;\frac{1}{2}\;£©}^2}}}{b^2}=1$£¬ÓÖ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬a2=b2+c2£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£»
£¨2£©ÒÔOMΪֱ¾¶µÄÔ²µÄÔ²ÐÄΪ$£¨\;1\;£¬\;\frac{t}{2}\;£©$£¬°ë¾¶$r=\sqrt{\frac{t^2}{4}+1}$£¬¿ÉµÃÔ²µÄ±ê×¼·½³Ì£»ÓÉÓÚÒÔOMΪֱ¾¶µÄÔ²±»Ö±Ïß3x-4y-5=0½ØµÃµÄÏÒ³¤Îª2£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÔ²Ðĵ½Ö±Ïß3x-4y-5=0µÄ¾àÀëd£¬ÀûÓÃÏÒ³¤¹«Ê½¿ÉµÃÏÒ³¤=2$\sqrt{{r}^{2}-{d}^{2}}$¼´¿ÉµÃ³ö£®
£¨3£©·½·¨Ò»£º¹ýµãF×÷OMµÄ´¹Ïߣ¬´¹×ãÉèΪK£®Ö±ÏßOMµÄ·½³ÌΪ$y=\frac{t}{2}x$£¬Ö±ÏßFNµÄ·½³ÌΪ$y=-\frac{2}{t}£¨x-1£©$£¬ÁªÁ¢½âµÃK×ø±ê£¬¿ÉµÃ|OK|£¬|OM|£¬ÀûÓÃ|ON|2=|OK|•|OM|¼´¿ÉÖ¤Ã÷£®
·½·¨¶þ£ºÉèN£¨x0£¬y0£©£¬Ôò$\overrightarrow{FN}=£¨\;{x_0}-1\;£¬\;{y_0}\;£©$£¬$\overrightarrow{OM}=£¨\;2\;£¬\;t\;£©$£¬$\overrightarrow{MN}=£¨\;{x_0}-2\;£¬\;{y_0}-t\;£©$£¬$\overrightarrow{ON}=£¨\;{x_0}\;£¬\;{y_0}\;£©$£®ÀûÓÃ$\overrightarrow{FN}¡Í\overrightarrow{OM}$£¬$\overrightarrow{MN}¡Í\overrightarrow{ON}$£¬¿ÉÖ¤$|ON|=\sqrt{{x}_{0}^{2}+{y}_{0}^{2}}$Ϊ¶¨Öµ£®

½â´ð £¨1£©½â£ºÓÉÌâÒâµÃ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬¢Ù
¡ßÍÖÔ²¾­¹ýµã$P£¨\;\frac{{\sqrt{6}}}{2}\;£¬\;\frac{1}{2}\;£©$£¬¡à$\frac{{{{£¨\;\frac{{\sqrt{6}}}{2}\;£©}^2}}}{a^2}+\frac{{{{£¨\;\frac{1}{2}\;£©}^2}}}{b^2}=1$¢Ú
ÓÖa2=b2+c2¢Û
ÓÉ¢Ù¢Ú¢Û½âµÃa2=2£¬b2=c2=1£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®
£¨2£©½â£ºÒÔOMΪֱ¾¶µÄÔ²µÄÔ²ÐÄΪ$£¨\;1\;£¬\;\frac{t}{2}\;£©$£¬°ë¾¶$r=\sqrt{\frac{t^2}{4}+1}$£¬
¹ÊÔ²µÄ·½³ÌΪ${£¨x-1£©^2}+{£¨y-\frac{t}{2}£©^2}=\frac{t^2}{4}+1$£®
¡ßÒÔOMΪֱ¾¶µÄÔ²±»Ö±Ïß3x-4y-5=0½ØµÃµÄÏÒ³¤Îª2£¬
¡àÔ²Ðĵ½Ö±Ïß3x-4y-5=0µÄ¾àÀë$d=\sqrt{{r^2}-1}=\sqrt{\frac{t^2}{4}+1-1}=\frac{t}{2}$£®
¡à$\frac{|3-2t-5|}{5}=\frac{t}{2}$£¬¼´2|2t+2|=5t£¬
¹Ê4t+4=5t£¬»ò4t+4=-5t£¬
½âµÃt=4£¬»ò$t=-\frac{4}{9}$£®
ÓÖt£¾0£¬¹Êt=4£®
ËùÇóÔ²µÄ·½³ÌΪ£¨x-1£©2+£¨y-2£©2=5£®
£¨3£©Ö¤Ã÷£º·½·¨Ò»£º¹ýµãF×÷OMµÄ´¹Ïߣ¬´¹×ãÉèΪK£®
Ö±ÏßOMµÄ·½³ÌΪ$y=\frac{t}{2}x$£¬Ö±ÏßFNµÄ·½³ÌΪ$y=-\frac{2}{t}£¨x-1£©$£®
ÓÉ$\left\{\begin{array}{l}y=\frac{t}{2}x\\ y=-\frac{2}{t}£¨x-1£©\end{array}\right.$£¬½âµÃ$x=\frac{4}{{{t^2}+4}}$£¬¹Ê$K£¨\;\frac{4}{{{t^2}+4}}\;£¬\;\frac{2t}{{{t^2}+4}}\;£©$£®
¡à$|OK|\;=\sqrt{\frac{16}{{{{£¨{t^2}+4£©}^2}}}+\frac{{4{t^2}}}{{{{£¨{t^2}+4£©}^2}}}}=\sqrt{\frac{4}{{{t^2}+4}}}$£»
$|OM|\;=\sqrt{4+{t^2}}$£®
ÓÖ$|ON{|^2}\;=\;|OK|•|OM|\;=\sqrt{\frac{4}{{4+{t^2}}}}•\sqrt{4+{t^2}}=2$£®
¡à$|ON|\;=\sqrt{2}$£®
¡àÏß¶ÎONµÄ³¤Îª¶¨Öµ$\sqrt{2}$£®
·½·¨¶þ£ºÉèN£¨x0£¬y0£©£¬Ôò$\overrightarrow{FN}=£¨\;{x_0}-1\;£¬\;{y_0}\;£©$£¬$\overrightarrow{OM}=£¨\;2\;£¬\;t\;£©$£¬$\overrightarrow{MN}=£¨\;{x_0}-2\;£¬\;{y_0}-t\;£©$£¬$\overrightarrow{ON}=£¨\;{x_0}\;£¬\;{y_0}\;£©$£®
¡ß$\overrightarrow{FN}¡Í\overrightarrow{OM}$£¬¡à2£¨x0-1£©+ty0=0£®¡à2x0+ty0=2£®
ÓÖ¡ß$\overrightarrow{MN}¡Í\overrightarrow{ON}$£¬¡àx0£¨x0-2£©+y0£¨y0-t£©=0£®
¡à$x_0^2+y_0^2=2{x_0}+t{y_0}=2$£®
¡à$|\overrightarrow{ON}|\;=\sqrt{x_0^2+y_0^2}=\sqrt{2}$Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÁËÔ²×¶ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²¼°Ô²µÄÏཻÎÊÌâ¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýÖ®¼äµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽµÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚ¡°³ªÏìÄÚ½­¡±Ñ¡°ÎÈüÖУ¬¼×¡¢ÒÒÁ½Î»¸èÊÖµÄ5´ÎµÃ·ÖÇé¿öÈ羥ҶͼËùʾ£¬¼Ç¼×¡¢ÒÒÁ½ÈËµÄÆ½¾ùµÃ·Ö·Ö±ð$\overline{{X}_{¼×}}$¡¢$\overline{{X}_{ÒÒ}}$£¬ÔòÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\overline{{X}_{¼×}}$£¼$\overline{{X}_{ÒÒ}}$£¬Òұȼ׳ɼ¨Îȶ¨B£®$\overline{{X}_{¼×}}$£¼$\overline{{X}_{ÒÒ}}$£¬¼×±ÈÒҳɼ¨Îȶ¨
C£®$\overline{{X}_{¼×}}$£¾$\overline{{X}_{ÒÒ}}$£¬¼×±ÈÒҳɼ¨Îȶ¨D£®$\overline{{X}_{¼×}}$£¾$\overline{{X}_{ÒÒ}}$£¬Òұȼ׳ɼ¨Îȶ¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£® Èçͼ³ÌÐò¿òͼ£¬µ±Êä³öµÄÈκÎÒ»¸öÈ·¶¨µÄyֵʱǡºÃÖ»¶ÔÓ¦ÊäÈëΨһµÄxÖµ£¬ÔòÕâÊÇÊä³öµÄyÖµµÄ·¶Î§ÊÇ[0£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÕýËÄÀâÖùABCD-A1B1C1D1µÄµ×Ãæ±ß³¤Îª2£¬²àÀⳤΪµ×Ãæ±ß³¤µÄ2±¶£¬EµãΪADµÄÖе㣬ÔòÈýÀâ×¶D-BEC1µÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{8}{3}$B£®4C£®$\frac{4}{3}$D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÒ»¸ö¶¥µãÊÇ£¨0£¬1£©£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÑÖª¾ØÐÎABCDµÄËÄÌõ±ß¶¼ÓëÍÖÔ²CÏàÇУ¬ÉèÖ±ÏßAB·½³ÌΪy=kx+m£¬Çó¾ØÐÎABCDÃæ»ýµÄ×îСֵÓë×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÍÖÔ²$\frac{x^2}{9}+\frac{y^2}{b^2}=1$£¨0£¼b£¼3£©£¬×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚ A£¬BÁ½µã£¬Èô|AF2|+|BF2|µÄ×î´óֵΪ8£¬ÔòÍÖÔ²µÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{{\sqrt{2}}}{3}$C£®$\frac{{\sqrt{6}}}{3}$D£®$\frac{{\sqrt{3}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÓëË«ÇúÏßC£º$\frac{{x}^{2}}{12}-\frac{{y}^{2}}{4}$=1¹²½¹µã£¬ÇÒ¹ýµã£¨0£¬3£©µÄÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{2\sqrt{34}}{17}$B£®$\frac{\sqrt{6}}{3}$C£®$\frac{4\sqrt{7}}{7}$D£®$\frac{4}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1a2¡­an=${2}^{{b}_{n}-n}$£¬Èô{an}ΪµÈ±ÈÊýÁУ¬ÇÒa1=1£¬b2=b1+2
£¨¢ñ£©ÇóanÓëbn£»
£¨¢ò£©Éècn=$\frac{1}{{a}_{n}}+\frac{1}{{b}_{n}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïß2x-y-4=0ÓëÖ±Ïßy=x-1µÄ½»µãΪM£¬¹ýµãA£¨0£¬3£©×÷Ö±Ïßl£¬Ê¹µÃµãMµ½Ö±ÏßlµÄ¾àÀëΪ1£®ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸