精英家教网 > 高中数学 > 题目详情
9.设F为抛物线C:y2=4x的焦点,过F且倾斜角为45°的直线交C于A,B两点,则|AB|=(  )
A.7B.8C.9D.10

分析 先根据抛物线方程求得焦点坐标和准线方程,根据直线的斜率求得直线的方程与抛物线方程联立消去y,根据韦达定理求得xA+xB的值,进而根据抛物线的定义可知直线AB的长为xA+$\frac{p}{2}$+xB+$\frac{p}{2}$答案可得.

解答 解:依题意可知抛物线C:y2=4x焦点为(1,0),直线AB的方程为y=x-1,代入抛物线方程得x2-6x+1=0,
∴xA+xB=3
根据抛物线的定义可知直线AB的长为:xA+$\frac{p}{2}$+xB+$\frac{p}{2}$=6+2=8.
故选:B.

点评 本题主要考查了抛物线的简单性质,直线与抛物线的位置关系.在涉及焦点弦的问题时常需要把直线与抛物线方程联立利用韦达定理设而不求,考查抛物线的定义的灵活应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求下列函数的最大值和最小值.
(1)y=$\sqrt{1-\frac{1}{2}cosx}$
(2)y=3+2cos(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(0,3),离心率e=$\frac{4}{5}$.
(1)求椭圆方程;
(2)若直线l:y=kx-3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,其焦距为2c,长轴长是焦距的$\sqrt{5}$倍,b,c的一个等比中项为$2\sqrt{2}$,则c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a=0.80.2,b=0.80.5,c=5.20.1,则这三个数的大小关系为(  )
A.b<a<cB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.提高五爱隧道的车辆通行能力可改善附近路段高峰期间的交通状况,现将隧道内的车流速度记作υ(单位:千米/小时),车流密度记作x(单位:辆/千米).研究表明:当隧道内的车流密度达到180辆/千米时,会造成该路段道路堵塞,此时车流速度为0千米/小时;当车流密度不超过30辆/千米时,车流速度为50千米/小时;当30≤x≤180时,车流速度υ是车流密度x的一次函数.
(Ⅰ)当0<x≤180时,求函数υ(x)的表达式;
(Ⅱ)当车流密度x为多少时,车流量(单位时间内通过隧道内某观测点的车辆数,单位:辆/小时)f(x)=x•υ(x)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,从椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x 轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=f(x)的图象如图所示,则以下描述正确的是(  )
A.函数f(x)的定义域为[-4,4)
B.函数f(x)的值域为[0,5]
C.此函数在定义域内既不是增函数也不是减函数
D.对于任意的y∈[0,+∞),都有唯一的自变量x与之对应

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设直线l过点P(-1,0)且倾斜角为$\frac{π}{3}$,则直线l被椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1截得的弦长为$\frac{4\sqrt{22}}{7}$.

查看答案和解析>>

同步练习册答案