精英家教网 > 高中数学 > 题目详情
1.如图,从椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x 轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由椭圆方程,可得A,B,P的坐标,再由直线平行的条件:斜率相等,结合离心率公式,计算即可得到.

解答 解:由椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,可得A(a,0),B(0,b),F1(-c,0),
设P(-c,y),则$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,解得y=±$\frac{{b}^{2}}{a}$,可取P(-c,$\frac{{b}^{2}}{a}$),
由AB∥OP,则kAB=kOP
即为-$\frac{b}{a}$=-$\frac{{b}^{2}}{ac}$,
即为b=c,
则a=$\sqrt{{b}^{2}+{c}^{2}}$=$\sqrt{2}$c,
即有e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$.
故选C.

点评 本题主要考查椭圆的离心率的求法,同时考查直线平行的条件:斜率相等,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点P($\sqrt{3}$,$\frac{1}{2}$)
(1)求椭圆C的方程.
(2)设点Q是椭圆C上一个动点,点A的坐标为(-1,0),记|QA|2=1+λ|QO|2,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设Sn为数列{an}的前n项和,且对?n∈N*,点(an,Sn)都在函数f(x)=-$\frac{1}{2}$x+$\frac{1}{2}$的图象上,等差数列{bn}的首项b1=1,公差d>0,且b2,b5,b14成等比数列.
(1)求数列{an}与{bn}的通项公式
(2)若数列{cn}对?n∈N*,都有$\frac{{C}_{1}}{{a}_{1}}$+$\frac{{C}_{2}}{{a}_{2}}$+…+$\frac{{C}_{n}}{{a}_{n}}$=bn+1成立,求数列{cn•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F为抛物线C:y2=4x的焦点,过F且倾斜角为45°的直线交C于A,B两点,则|AB|=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中正确的是(  )
①“若x2+y2≠0,则x,y不全为零”;
②“正三角形都相似”的逆命题;
③“若m>0,则x2+x-m=0有实根”的逆否命题;
④在实数范围内,“若x-$\sqrt{2}$是有理数,则x是无理数”的否命题.
A.①②③④B.①③C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,F1、F2为其左、右焦点,过F1的直线l交椭圆于A、B两点,△F1AF2的周长为$2(\sqrt{2}+1)$.
(1)求椭圆的标准方程;
(2)求△AOB面积的最大值(O为坐标原点);
(3)直线m也过F1与且与椭圆交于C、D两点,且l⊥m,设线段AB、CD的中点分别为M、N两点,试问:直线MN是否过定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题P:不等式a2-4a+3<0的解集;命题Q:使(a-2)x2+2(a-2)x-4<0对任意实数x恒成立的实数a,若P∨Q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等比数列{an}的前n项和为Sn,S2n=4(a1+a3+…+a2n-1),a1a2a3=8,则a4=(  )
A.2B.6C.18D.54

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,且a2=$\frac{5}{3}$,S10=40.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(-1)n+1anan+1(n∈N*),求数列{bn}的前2n项的和T2n

查看答案和解析>>

同步练习册答案