精英家教网 > 高中数学 > 题目详情
11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点P($\sqrt{3}$,$\frac{1}{2}$)
(1)求椭圆C的方程.
(2)设点Q是椭圆C上一个动点,点A的坐标为(-1,0),记|QA|2=1+λ|QO|2,求λ的最大值.

分析 (1)运用椭圆的离心率公式和a,b,c的关系,以及P满足椭圆方程,解方程可得椭圆方程;
(2)设Q(x,y),x∈[-2,2],代入椭圆方程,求得|QA|,|QO|,求得λ关于x的关系式,讨论x的符号,运用基本不等式即可得到最大值.

解答 解:(1)设椭圆C的焦距为2c,则$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,又a2-b2=c2
∴3a2=4c2,c2=3b2
∴椭圆C的方程为:$\frac{3{x}^{2}}{4{c}^{2}}$+$\frac{3{y}^{2}}{{c}^{2}}$=1,
代入P($\sqrt{3}$,$\frac{1}{2}$)得c=$\sqrt{3}$,a=2,b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{4}$+y2=1;            
(2)设Q(x,y),x∈[-2,2],则|QO|2=x2+y2
又A(-1,0),|QA|2=(x+1)2+y2
λ=$\frac{|QA{|}^{2}-1}{|QO{|}^{2}}$=$\frac{(x+1)^{2}+{y}^{2}-1}{{x}^{2}+{y}^{2}}$=$\frac{{x}^{2}+2x+{y}^{2}}{{x}^{2}+{y}^{2}}$=1+$\frac{2x}{{x}^{2}+{y}^{2}}$,
点P(x,y)满足$\frac{{x}^{2}}{4}$+y2=1,即有y2=1-$\frac{{x}^{2}}{4}$,
λ=1+$\frac{2x}{1+\frac{3{x}^{2}}{4}}$=1+$\frac{8x}{4+3{x}^{2}}$,
当x≤0时,λ≤1,
当x>0时,x∈(0,2],λ=1+$\frac{8}{3x+\frac{4}{x}}$,
因为3x+$\frac{4}{x}$≥2$\sqrt{3x•\frac{4}{x}}$=4$\sqrt{3}$,所以λ≤1+$\frac{2\sqrt{3}}{3}$,当且仅当x=$\frac{2\sqrt{3}}{3}$时,
λ取得最大值1+$\frac{2\sqrt{3}}{3}$,

点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,注意点满足椭圆方程,同时考成绩基本不等式的运用:求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知点F(1,0),直线l:x=-1,动点P到点F的距离等于它到直线l的距离.
(1)试判断点P的轨迹C的形状,并写出其方程;
(2)若曲线C与直线m:y=x-1相交于A、B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据下列算法按要求分别完成下列问题,其中[x]表示不超过z的最大整数.
第一步,a=24
第二部,S=0
第三步,i=1
第四步,如果[$\frac{a}{i}$]=$\frac{a}{i}$,则S=S+i
第五步,i=i+1
第六步,如果i<a,转第四步
第七步,输出S
(1)此算法的功能是求整数24的所有比它小的正因数的和;
(2)输出的S值为36;
(3)根据此算法完成方框内的流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的最大值和最小值.
(1)y=$\sqrt{1-\frac{1}{2}cosx}$
(2)y=3+2cos(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线M的焦点与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的焦点相同.如果直线y=-$\sqrt{2}$x是M的一条渐近线,那么M的方程为(  )
A.$\frac{{x}^{2}}{18}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{18}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若抛物线y2=2px的焦点与椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1的右焦点重合,则P的值为(  )
A.-2B.2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.当双曲线C不是等轴双曲线时,我们把以双曲线C的实轴、虚轴的端点作为顶点的椭圆称为双曲线C的“伴生椭圆”.则离心率为$\sqrt{3}$的双曲线的“伴生椭圆”的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(0,3),离心率e=$\frac{4}{5}$.
(1)求椭圆方程;
(2)若直线l:y=kx-3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,从椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x 轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案