ÏÖ´ú³ÇÊдó¶àÊÇÆåÅÌʽ²¼¾Ö£¨Èç±±¾©µÀ·¼¸ºõ¶¼ÊǶ«Î÷ºÍÄϱ±×ßÏò£©£®ÔÚÕâÑùµÄ³ÇÊÐÖУ¬ÎÒÃÇ˵µÄÁ½µã¼äµÄ¾àÀëÍùÍù²»ÊÇÖ¸Á½µã¼äµÄÖ±Ïß¾àÀë£¨Î»ÒÆ£©£¬¶øÊÇʵ¼Ê·³Ì£¨Èçͼ1£©£®ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬ÎÒÃǶ¨ÒåA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã¼äµÄ¡°Ö±½Ç¾àÀ롱Ϊ£ºD£¨AB£©=|x1-x2|+|y1-y2|£®
£¨1£©ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÈçͼ2£¬Ð´³öËùÓÐÂú×ãµ½Ô­µãµÄ¡°Ö±½Ç¾àÀ롱Ϊ2µÄ¡°¸ñµã¡±µÄ×ø±ê£®£¨¸ñµãÖ¸ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©
£¨2£©Çóµ½Á½¶¨µãF1¡¢F2µÄ¡°Ö±½Ç¾àÀ롱ºÍΪ¶¨Öµ2a£¨a£¾0£©µÄ¶¯µã¹ì¼£·½³Ì£¬²¢ÔÚÖ±½Ç×ø±êϵÄÚ×÷³ö¸Ã¶¯µãµÄ¹ì¼£
¢ÙF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬a=2
¢ÚF1£¨-1£¬-1£©£¬F2£¨1£¬1£©£¬a=2£»
¢ÛF1£¨-1£¬-1£©£¬F2£¨1£¬1£©£¬a=4£®
£¨3£©Ð´³öͬʱÂú×ãÒÔÏÂÁ½¸öÌõ¼þµÄ¡°¸ñµã¡±µÄ×ø±ê£¬²¢ËµÃ÷ÀíÓÉ£¨¸ñµãÖ¸ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©£®
¢Ùµ½A£¨-1£¬-1£©£¬B£¨1£¬1£©Á½µã¡°Ö±½Ç¾àÀ롱ÏàµÈ£»
¢Úµ½C£¨-2£¬-2£©£¬D£¨2£¬2£©Á½µã¡°Ö±½Ç¾àÀ롱ºÍ×îС£®
¿¼µã£ºÁ½µã¼äµÄ¾àÀ빫ʽ
רÌ⣺ֱÏßÓëÔ²
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þ½áºÏͼÏóÄÜÇó³öËùÓÐÂú×ãµ½Ô­µãµÄ¡°Ö±½Ç¾àÀ롱Ϊ2µÄ¡°¸ñµã¡±µÄ×ø±ê£®
£¨2£©Ìõ¼þ¢Ù¹ì¼£·½³ÌΪ|x+1|+|x-1|+2|y|=4£¬Ìõ¼þ¢Ú¹ì¼£·½³ÌΪ£º|x+1|+|y+1|+|x-1|+|y-1|=4£¬Ìõ¼þ¢Û£º¹ì¼£·½³ÌΪ£º|x+1|+|y+1|+|x-1|+|y-1|=8£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨3£©Âú×ãÌõ¼þµÄ¸ñµãÓУ¨-2£¬2£©£¬£¨-1£¬2£©£¬£¨-2£¬1£©£¬£¨-1£¬1£©£¬£¨0£¬0£©£¬£¨1£¬-1£©£¬£¨2£¬-1£©£¬£¨1£¬-2£©£¬£¨2£¬-2£©£¬¶ÔÓÚ¢Ù£¬Âú×ã|x+1|+|y+1|=|x-1|+|y-1|£¬´Ó¶øp¡Ê{£¨x£¬y£©|x+y=0£¬-1¡Üx¡Ü1»òx¡Ü-1£¬y¡Ý1»òx¡Ý1£¬y¡Ü-1}£¬¶ÔÓÚ¢Ú£¬D£¨PA£©+D£¨PB£©=|x+2|+|y+2|+|x-2|+|y-2|¡Ý|x+2+2-x|+|y+2+2-y|=8£¬´Ó¶øµãP¡Ê{£¨x£¬y£©|-2¡Üx¡Ü2£¬-2¡Üy¡Ü2}£®ÓÉ´ËÄÜÇó³ö¸ñµãµÄ×ø±ê£®
½â´ð£º ½â£º£¨1£©ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÈçͼ2£¬
ËùÓÐÂú×ãµ½Ô­µãµÄ¡°Ö±½Ç¾àÀ롱Ϊ2µÄ¡°¸ñµã¡±µÄ×ø±êÓУº
£¨0£¬2£¬£©£¬£¨1£¬1£©£¬£¨2£¬0£©£¬£¨1£¬-1£©£¬
£¨0£¬-2£©£¬£¨-1£¬-1£©£¬£¨-2£¬0£©£¬£¨-1£¬1£©£®
£¨2£©Ìõ¼þ¢Ù¹ì¼£·½³ÌΪ|x+1|+|x-1|+2|y|=4£¬
µ±x¡Ü-1£¬y¡Ý0ʱ£¬x-y+2=0£»
µ±x¡Ü-1£¬y£¼0ʱ£¬x+y+2=0£»
µ±-1£¼x£¼1£¬y¡Ý0ʱ£¬y=1£»
µ±-1£¼x£¼1£¬y£¼0ʱ£¬y=-1£»
µ±x¡Ý1£¬y¡Ý0ʱ£¬x+y-2=0£»
µ±x¡Ý1£¬y£¼0ʱ£¬x-y-2=0£®
Ìõ¼þ¢Ú¹ì¼£·½³ÌΪ£º
|x+1|+|y+1|+|x-1|+|y-1|=4£¬
µ±x¡Ü-1£¬y¡Ý1ʱ£¬£¨x£¬y£©=£¨-1£¬1£©£»
µ±x¡Ü-1£¬-1¡Üy£¼1ʱ£¬x=-1£»
µ±-1£¼x£¼1£¬y¡Ý1ʱ£¬y=1£»
ÓɶԳÆÐÔ¿ÉµÃÆäËû²¿·ÖͼÐΣ®
Ìõ¼þ¢Û£º¹ì¼£·½³ÌΪ£º
|x+1|+|y+1|+|x-1|+|y-1|=8£¬
µ±x¡Ü-1£¬y¡Ý1ʱ£¬x-y+3=0£»
µ±x¡Ü-1£¬-1¡Üy£¼1ʱ£¬x+3=0£»
µ±-1£¼x£¼1£¬y¡Ý1ʱ£¬y=3£®
ÓɶԳÆÐÔ¿ÉµÃÆäËû²¿·ÖͼÐΣ®
£¨3£©Èçͼ£¬Âú×ãÌõ¼þµÄ¸ñµãÓУ¨-2£¬2£©£¬£¨-1£¬2£©£¬
£¨-2£¬1£©£¬£¨-1£¬1£©£¬£¨0£¬0£©£¬£¨1£¬-1£©£¬
£¨2£¬-1£©£¬£¨1£¬-2£©£¬£¨2£¬-2£©£¬
¶ÔÓÚ¢Ù£¬ÉèP£¨x£¬y£©Âú×ãµ½A£¨-1£¬-1£©¡¢B£¨1£¬1£©Á½µã
¡°Ö±½Ç¾àÀ롱ÏàµÈ£¬
¼´Âú×ã|x+1|+|y+1|=|x-1|+|y-1|£¬
½âµÃp¡Ê{£¨x£¬y£©|x+y=0£¬-1¡Üx¡Ü1»òx¡Ü-1£¬y¡Ý1»òx¡Ý1£¬y¡Ü-1}£¬Èçͼ£®
¶ÔÓÚ¢Ú£¬ÉèP£¨x£¬y£©µ½C£¨-2£¬-2£©£¬D£¨2£¬2£©Á½µã¡°Ö±½Ç¾àÀ롱ºÍ×îС£¬
¼´D£¨PA£©+D£¨PB£©=|x+2|+|y+2|+|x-2|+|y-2|
=|x+2|+|x-2|+|y+2|+|y-2|
¡Ý|x+2+2-x|+|y+2+2-y|=8£¬
µ±ÇÒ½öµ±-2¡Üx¡Ü2ÇÒ-2¡Üy¡Ü2µÈºÅ³ÉÁ¢£¬
¿ÉµÃµãP¡Ê{£¨x£¬y£©|-2¡Üx¡Ü2£¬-2¡Üy¡Ü2}£®Èçͼ
¹ÊͬʱÂú×ãÌõ¼þ¢Ù¢ÚµÄ¸ñµãµÄ×ø±êÊÇ£º
£¨-2£¬2£©£¬£¨-1£¬2£©£¬£¨-2£¬1£©£¬£¨-1£¬1£©£¬£¨0£¬0£©£¬
£¨1£¬-1£©£¬£¨2£¬-1£©£¬£¨1£¬-2£©£¬£¨2£¬-2£©£®
µãÆÀ£º±¾Ì⿼²é¸ñµã×ø±êµÄÇ󷨣¬¿¼²é¹ì¼£·½³ÌµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ·ÖÀàÌÖÂÛ˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É趨ÒåÓòΪRµÄº¯Êýf£¨x£©=
2x+1
a+4x
Ϊżº¯Êý£¬ÆäÖÐaΪʵ³£Êý£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©Çóº¯Êýy=f£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÒ»¶¯Ô²PÓëÔ²M1£º£¨x+4£©2+y2=25ºÍÔ²M2£º£¨x-4£©2+y2=1¾ùÍâÇУ¨ÆäÖÐM1¡¢M2·Ö±ðΪԲM1ºÍÔ²M2µÄÔ²ÐÄ£©£®
£¨¢ñ£©Çó¶¯Ô²Ô²ÐÄPµÄ¹ì¼£EµÄ·½³Ì£»
£¨¢ò£©Èô¹ýµãM2µÄÖ±ÏßlÓëÇúÏßEÓÐÁ½¸ö½»µãA¡¢B£¬Çó|AM1|•|BM1|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªPÊÇÍÖÔ²
x2
25
+
y2
16
=1ÉϵÚÒ»ÏóÏÞÄÚÈÎÒ»µã£¬¹ýµãP×÷Ô²x2+y2=16µÄÁ½ÌõÇÐÏßPA¡¢PB£¨µãA¡¢BÊÇÇе㣩£¬Ö±ÏßAB·Ö±ð½»xÖá¡¢yÖáÓÚµãMN£¬Ôò¡÷MONµÄÃæ»ýS¡÷MON£¨OÊÇ×ø±êÔ­µã£©µÄ×îСֵÊÇ£¨¡¡¡¡£©
A¡¢
64
5
B¡¢14
C¡¢
41
5
D¡¢
32
5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÈýÀâÖùABC-A1B1C1ÖУ¬AB=AC=AA1=2£¬Æ½ÃæABC1¡ÍÆ½ÃæA1ACC1£¬
ÓÖ¡ÏAA1C1=¡ÏBAC1=60¡ã£¬AC1ÓëA1CÏཻÓÚµãO£®
£¨¢ñ£©ÇóÖ¤£ºBO¡ÍÆ½ÃæA1ACC1£»
£¨¢ò£©ÇóAB1ÓëÆ½ÃæA1ACC1Ëù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=x2+3ax+1£¨a¡ÊR£©£®
£¨1£©Èôº¯Êýy=f£¨|x|£©ÓÐËĸöµ¥µ÷Çø¼ä£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©º¯Êýg£¨x£©=m|x-1|£¨m¡ÊR£©£¬Èôa=1ʱ£¬·½³Ì|f£¨x£©-1|=g£¨x£©Ç¡ÓÐ4¸öÏàÒìµÄʵÊý¸ù£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax2+£¨1-2a£©x-lnx£¨a¡ÊR£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨2£©µ±a£¼0ʱ£¬Çóº¯Êýf£¨x£©ÔÚÇø¼ä[
1
2
£¬1]ÉÏ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÆäÊ×Ïîa1=1£¬¹«²îd£¼0£¬{an}µÄǰnÏîºÍΪSn£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬×Ü´æÔÚm¡ÊN*£¬Ê¹µÃSn=am£¬Ôòd=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýf£¨x£©=
(a+2)x2+bx+a+2
£¨a£¬b¡ÊR£©¶¨ÒåÓòΪR£¬Ôò3a+bµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢[-2£¬+¡Þ£©
B¡¢[-6£¬+¡Þ£©
C¡¢[6£¬+¡Þ£©
D¡¢[0£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸