精英家教网 > 高中数学 > 题目详情

【题目】是坐标原点,椭圆的左右焦点分别为,点在椭圆上,若的面积最大时且最大面积为.

1)求椭圆的标准方程;

2)直线与椭圆在第一象限交于点,点是第四象限内的点且在椭圆上,线段被直线垂直平分,直线与椭圆交于另一点,求证:.

【答案】(1)

(2)证明见解析.

【解析】

1)由的面积最大时且最大面积为求得,再结合即可求出椭圆的标准方程;(2)易知,设直线,则直线,然后分别与联立求出,再利用斜率公式得出的值即可.

1)当是椭圆的上顶点或下顶点时的面积最大,设是椭圆的上顶点,

∴椭圆的标准方程为.

2)依题意点的坐标为,直线不与垂直,设直线

,直线,即

,∴

.

,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)不需证明,直接写出的奇偶性:

(Ⅱ)讨论的单调性,并证明有且仅有两个零点:

(Ⅲ)设的一个零点,证明曲线在点处的切线也是曲线的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且对一切正整数都有.

1)求证:

2)求数列的通项公式;

3)是否存在实数,使不等式,对一切正整数都成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和圆为椭圆的左、右焦点,点在椭圆上,当直线与圆相切时,

I)求的方程;

)直线与椭圆和圆都相切,切点分别为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.

1)求曲线的普通方程和极坐标方程;

2)设直线与曲线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)当时,判断直线与曲线的位置关系;

2)若直线与曲线相交所得的弦长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且函数为偶函数,当时,,若有三个零点,则实数的取值集合是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的方程有实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在R上的函数的导函数,且,则 的大小关系为( )

A. a<b<c B. b<a<c C. c<a<b D. c<b<a

查看答案和解析>>

同步练习册答案