精英家教网 > 高中数学 > 题目详情
16.关于x的方程$\sqrt{4-{x^2}}$=kx+2只有一个实根,则实数k的取值范围是(  )
A.k=0B.k=0或k>1C.|k|>1D.k=0或|k|>1

分析 设已知方程的左边为y1,右边为y2,故y2表示圆心为原点,半径为2的半圆,y2表示恒过定点(0,2)的直线,画出两函数的图象,如图所示,则原方程要只有一个实数根,即要半圆与直线只有一个公共点,根据图象可知当直线与半圆相切时满足题意,求出此时k的值,再求出两个特殊位置,直线再过(2,0),求出此时k的值,当k小于求出的值时满足题意,同时求出直线过(-2,0)时k的值,当k大于求出的值时满足题意,综上,得到所有满足题意的k的范围.

解答 解:设y1=$\sqrt{4-{x^2}}$,y2=kx+2,
则y1表示圆心为原点,半径为2的x轴上方的半圆,y2表示恒过(0,2)的直线,
画出两函数图象,如图所示,根据图象可得:
当直线与半圆相切,即直线为y=2时,直线与半圆只有一个公共点,
即方程$\sqrt{4-{x^2}}$=kx+2只有一个实数根,此时k=0;
当直线过(0,2)和(2,0)时,直线的斜率为-1,
则当k<-1时,直线与半圆只有一个公共点,
即方程$\sqrt{4-{x^2}}$=kx+2只有一个实数根;
当直线过(0,2)和(-2,0)时,直线的斜率为1,
则当k>1时,直线与半圆只有一个公共点,
即方程$\sqrt{4-{x^2}}$=kx+2只有一个实数根,
综上,满足题意的k的范围是k=0或k>1或k<-1.
故答案为:k=0或k>1或k<-1.
故选:D.

点评 此题考查了直线与圆相交的性质,以及函数的图象,考查了数形结合的思想,解此类题的思路为:把方程两边分别设为函数,借助图形,利用两函数图象的交点个数判断方程解的情况来解决问题,同时要求学生考虑问题要全面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求下列函数的定义域:
(1)y=$\frac{1}{lg(x+1)-3}$;
(2)y=$\sqrt{lo{g}_{a}(4x-3)}$(a>0,且a≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)在等差数列{an}中,若a3=50,a5=30,求a7
(2)已知{an}为等比数列,a3=2,a2+a4=$\frac{20}{3}$,求{an}的通项式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x∈R|mx2-2x+3=0,m∈R},若A中元素至多只有一个,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:复数$\frac{a+i}{1+i}$(a∈R,i为虚数单位)在复平面上对应的点在第二象限,命题q:曲线y=x2+(2a-3)•x+1与x轴没有交点.若“p∨q”为真,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{2}$)∪($\frac{5}{2}$,+∞)B.(-∞,-1)∪($\frac{1}{2}$,$\frac{5}{2}$)C.(-∞,-1)∪[$\frac{1}{2}$,$\frac{5}{2}$]D.(-∞,$\frac{1}{2}$]∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x+1)为偶函数,且在[0,+∞)为减函数,则函数f(x)图象的对称轴为x=1,若实数a满足f(a-1)<f(2a),则实数a∈[$\frac{1}{2}$,3)∪(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数y=($\frac{1}{2}$)x-1+m的图象不经过第一象限,则m的取值范围是(  )
A.m≥-1B.m≥-2C.m≤-1D.m≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知一次函数y=kx+k+2,则无论k取何值时,它的图象一定经过的定点是(  )
A.(0,2)B.(-1,2)C.(1,2)D.(-1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)是定义在R上的偶函数,在(-∞,0)上是增函数,且f(2)=0,则使f(x)<0的x的取值范围是(  )
A.-2<x<2B.x<-2C.x<-2或x>2D.x>2

查看答案和解析>>

同步练习册答案