精英家教网 > 高中数学 > 题目详情

【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.

组别

频数

1)已知此次问卷调查的得分服从正态分布近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求

2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.

)得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;

)每次赠送的随机话费和相应的概率如下表.

赠送的随机话费/

概率

现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:,若,则.

【答案】1;(2)见解析.

【解析】

1)根据题中所给的统计表,利用公式计算出平均数的值,再利用数据之间的关系将表示为,利用题中所给数据,以及正态分布的概率密度曲线的对称性,求出对应的概率;

2)根据题意,高于平均数和低于平均数的概率各为,再结合得元、元的概率,分析得出话费的可能数据都有哪些,再利用公式求得对应的概率,进而得出分布列,之后利用离散型随机变量的分布列求出其数学期望.

1)由题意可得

易知

2)根据题意,可得出随机变量的可能取值有元,

.

所以,随机变量的分布列如下表所示:

所以,随机变量的数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知各项是正数的数列的前n项和为

(1)若nN*,n≥2),

①求数列的通项公式

②若对任意恒成立求实数的取值范围

(2)数列是公比为qq>0, q1)的等比数列,且{an}的前n.若存在正整数k,对任意nN*,使得为定值求首项的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自于同一年级的乘坐方式共有_______种(有数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点A(2,6),且与直线l1: x+y10=0相切于点B(6,4).

(1)求圆C的方程;

(2)过点P(6,24)的直线l2与圆C交于M,N两点,若△CMN为直角三角形,求直线l2的斜率;

(3)在直线l3: y=x2上是否存在一点Q,过点Q向圆C引两切线,切点为E,F, 使△QEF为正三角形,若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 底面 是棱上一点.

I)求证:

II)若 分别是 的中点,求证: 平面

III)若二面角的大小为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,现有一组数据,将其绘制所得的茎叶图如图所示(其中茎为整数部分,叶为小数部分.例如:可记为,且上述数据的平均数为.)

(Ⅰ)求茎叶图中数据的值;

(Ⅱ)现从茎叶图中小于的数据中任取两个数据分别替换的值,求恰有一个数据使得函数没有零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某印刷厂为了研究单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

印刷册数(千册)

单册成本(元)

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.

(1)为了评价两种模型的拟合效果,完成以下任务.

①完成下表(计算结果精确到);

印刷册数(千册)

单册成本(元)

模型甲

估计值

残差

模型乙

估计值

残差

②分别计算模型甲与模型乙的残差平方和,并通过比较,判断哪个模型拟合效果更好.

(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为千册,若印刷厂以每册元的价格将书籍出售给订货商,求印刷厂二次印刷千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,试判断函数的单调性;

(2)若,求证:函数上的最小值小于.

查看答案和解析>>

同步练习册答案