精英家教网 > 高中数学 > 题目详情
已知椭圆上的任意一点到它两个焦点的距离之和为,且它的焦距为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同两点,且线段的中点不在圆内,求实数的取值范围.
 (Ⅰ)椭圆的方程为
(Ⅱ)实数的取值范围为
本试题主要是考查了直线与椭圆的位置关系的综合运用。
(1)第一问中利用椭圆的性质,得到参数a,b,c的值。得到椭圆的方程。
(2)联立方程组,结合韦达定理,得到线段AB的中点,然后利用点不在圆内得到参数m的范围
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点,是平面上一动点,且满足,
(1)求点的轨迹对应的方程;
(2)已知点在曲线上,过点作曲线的两条弦,且的斜率为满足,试判断动直线是否过定点,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的准线与双曲线的右准线重合,则的值是  (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线上一点到直线的距离最短,则该点的坐标是(  )
A.(1, 2)B.(0, 0) C.(, 1)D.(1, 4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点为抛物线的焦点,为原点,点是抛物线准线上一动点,点在抛物线上,且,则的最小值为  ( )
A.6B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC一边的两个顶点为B(3,0),C(3,0)另两边所在直线的斜率之积为 为常数),则顶点A的轨迹不可能落在下列哪一种曲线上(   )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2是双曲线C:x2=1的两个焦点,P是C上一点,且△F1PF2是等腰直角三角形,则双曲线C的离心率为
A.1+B.2+
C.3-D.3+

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知中,,一个圆心为M,半径为的圆在内,沿着的边滚动一周回到原位。在滚动过程中,圆M至少与的一边相切,则点M到顶点的最短距离是             ,点M的运动轨迹的周长是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)设是单位圆上的任意一点,是过点轴垂直的直线,是直线 轴的交点,点在直线上,且满足. 当点在圆上运动时,记点M的轨迹为曲线
(Ⅰ)求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标;
(Ⅱ)过原点且斜率为的直线交曲线两点,其中在第一象限,它在轴上的射影为点,直线交曲线于另一点. 是否存在,使得对任意的,都有?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案