精英家教网 > 高中数学 > 题目详情
化简:
(1)
cos(α+π)sin(-α)
cos(-3π-α)sin(-α-4π)

(2)
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α).
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:由条件利用诱导公式对所给的式子进行化简,从而求得结果.
解答: 解:(1)
cos(α+π)sin(-α)
cos(-3π-α)sin(-α-4π)
=
-cosα•(-sinα)
cos(π-α)sin(-α)
=
cosαsinα
-cosα•(-sinα)
=1.
(2)
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α)=
sinα
cosα
•sinα•cosα=sin2α.
点评:本题主要考查利用诱导公式进行化简求值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,过F2作长轴的垂线,在第一象限和椭圆交于点H,且tan∠HF1F2=
3
4

(1)求椭圆的离心率;
(2)若椭圆的准线方程为x=±4
5
,一条过原点O的动直线l1与椭圆交于A,B两点,N为椭圆上满足|NA|=|NB|的一点,试求
1
|OA|2
+
1
|OB|2
+
2
|ON|2
的值;
(3)设动直线l2:y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别是F1,F2,离心率为
3
2
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点G是△ABC的重心,O是空间任一点.若
OB
+
OC
OG
+
AG
,则λ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=4cos2x-4
3
sinxcosx-1(x∈R).
(1)求出函数的最小正周期;
(2)求出函数的最大值及其相对应的x值;
(3)求出函数的单调增区间;
(4)求出函数的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x=my与抛物线C:y2=4x交于O(坐标原点),A两点,直线l2:x=my+m与抛物线C交于B,D两点.
(Ⅰ)若|BD|=2|OA|,求实数m的值;
(Ⅱ)过A,B,D分别作y轴的垂线,垂足分别为A1,B1,D1.记S1,S2分别为三角形OAA1和四边形BB1D1D的面积,求
S1
S2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为
2
2
.求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x-
π
6
).
(1)求函数f(x)的最小正周期和最值;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

非零向量
a
b
满足|
a
|=|
b
|=|
a
+
b
|,则
b
a
-
b
的夹角为
 

查看答案和解析>>

同步练习册答案