精英家教网 > 高中数学 > 题目详情
偶函数f(x)在区间[0,+∞)为单调减函数,若f(1)<f(lgx),求x的取值范围.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据函数奇偶性和单调性的关系,将不等式进行转化即可得到结论.
解答: 解:∵偶函数f(x)在区间[0,+∞)为单调减函数,
∴不等式f(1)<f(lgx)等价为f(1)<f(|lgx|),
即|lgx|<1,
即-1<lgx<1,
解得
1
10
<x<10

即x的取值范围是(
1
10
,10
点评:本题主要考查不等式的解法,利用函数奇偶性和单调性的关系将不等式进行转化是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=
2
1-i
,给出下列四个结论:①|z|=2;②z2=2i;③z的共轭复数是
.
z
=-1+i
;④z的虚部为i.其中正确结论的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+y2=1(a>1)的长轴、短轴、焦距分别为A1A2、B1B2、F1F2,且|F1F2|2是|A1A2|2 与
|B1B2|2的等差中项
(Ⅰ)求椭圆C1的方程;
(Ⅱ)若曲线C2的方程为(x-t)2+y2=(t2+
3
t)2(0<t≤
2
2
),过椭圆C1左顶点的直线l与曲线C2相切,求直线l被椭圆C1截得的线段长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,且f(x)=a-
2
2x+1
(x∈R),若函数f(x)为奇函数,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:函数g(x)=|x+3|-|x-3|是R上的奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
mx-1
1-x
(a>0且a≠1,m≠1)是奇函数,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若函数f(x)=asinx+cosx的一个对称中心是(
π
6
,0)
,则a的值等于-
3

②函数f(x)=cos(2x+
π
2
)在区间[0,
π
2
]上单调递减;
③若函数f(x)=sin(2x+
π
3
)
的图象向左平移a(a>0)个单位后得到的图象与原图象关于直线x=
π
2
对称,则a的最小值是
π
6

④已知函数f(x)=sin(2x+ϕ) (-π<ϕ<π),若-|f(
π
6
)|≤f(x) 对任意x∈R恒成立,则:φ=
π
6
或-
6

其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断正误:
(1)若三棱锥的六条边都相等,则此三棱锥的三组对棱互相垂直;
 

(2)若三棱锥的三条侧棱与底面所成的角相等,则此三棱锥是正三棱锥.
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(x,y)为不等式组
x2+y2≤1
x-y-1≤0
x+y+1≥0
表示的平面区域上一点,则x+2y取值范围为(  )
A、[-
5
5
]
B、[-2,
5
]
C、[-1,2]
D、[-2,2]

查看答案和解析>>

同步练习册答案