精英家教网 > 高中数学 > 题目详情
已知复数z=
2
1-i
,给出下列四个结论:①|z|=2;②z2=2i;③z的共轭复数是
.
z
=-1+i
;④z的虚部为i.其中正确结论的个数是(  )
A、0B、1C、2D、3
考点:命题的真假判断与应用
专题:数系的扩充和复数
分析:利用复数的运算法则可得:复数z=
2
1-i
=1+i.进而得出|z|,z2
.
z
,z的虚部.
解答: 解:复数z=
2
1-i
=
2(1+i)
(1-i)(1+i)
=
2(1+i)
2
=1+i.
∴|z|=
12+12
=
2

z2=(1+i)2=2i,
.
z
=1-i,
z的虚部为1.
综上可知:②正确.
故选:B.
点评:本题考查了复数的运算法则及其有关概念,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知M(0,
3
),N(0,-
3
),平面上一动点P满足|PM|+|PN|=4,记点P的轨迹为P.
(1)求轨迹P的方程;
(2)设过点E(0,1)且不垂直于坐标轴的直线l1:y=kx+b1与轨迹P相交于A,B两点,若y轴上存在一点Q,使得直线QA,QB关于y轴对称,求出点Q的坐标;
(3)是否存在不过点E(0,1),且不垂直坐标轴的直线l,它与轨迹P及圆E:x2+(y-1)2=9从左到右依次交于C,D,F,G四点,且满足
.
ED
-
.
EC
=
.
EG
-
.
EF
?若存在,求出当△OCG的面积S取得最小值时k2的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2+x   (x ≥ 0)
-x2+x (x<0)
,则不等式f(x2-x+1)<12的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设经过抛物线C的焦点的直线l与抛物线C交于A、B两点,那么抛物线C的准线与以AB为直径的圆的位置关系为(  )
A、相离B、相切
C、相交但不经过圆心D、相交且经过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sinx的图象上所有的点向右平行移动
π
3
个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f(x)的图象,则f(-π)等于(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、当直线l1与l2的斜率k1,k2满足k1•k2=-1时,两直线一定垂直
B、直线Ax+By+C=0的斜率为-
A
B
C、过(x1,y1),(x2,y2)两点的所有直线的方程
y-y1
y2-y1
=
x-x1
x2-x1
D、经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β为两个平面,且α⊥β,l为直线.则l⊥β是l∥α的(  )
A、必要而不充分条件
B、充分而不必要条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4
2
x的焦点为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,且椭圆的长轴长为4,M、N是椭圆上的动点
(1)求椭圆标准方程;
(2)设动点P满足:
OP
=
OM
+2
ON
,直线OM与ON的斜率之积为-
1
2
,证明:存在定点F1,F2,使得|PF1|+|PF2|为定值,并求出F1,F2的坐标;
(3)若M在第一象限,且点M,N关于原点对称,MA垂直于x轴于点A,连接NA 并延长交椭圆于点B,记直线MN,MB的斜率分别为kMN,kMB,证明:kMN•kMB+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)在区间[0,+∞)为单调减函数,若f(1)<f(lgx),求x的取值范围.

查看答案和解析>>

同步练习册答案