精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga
mx-1
1-x
(a>0且a≠1,m≠1)是奇函数,求m的值.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据函数f(x)是奇函数,建立条件关系,即可求出m的值.
解答: 解:∵f(x)=loga
mx-1
1-x
(a>0且a≠1,m≠1)是奇函数,
∴f(-x)=-f(x),
即f(-x)+f(x)=0,
∴loga
-mx-1
1+x
+loga
mx-1
1-x
=0,
∴loga
mx-1
1-x
-mx-1
1+x
)=0,
m2x2-1
x2-1
=1
,即m=±1,
∵m≠1,
∴m=-1,
此时f(x)=loga
x+1
x-1
,满足f(-x)=-f(x),
即f(x)是奇函数.
∴m=-1.
点评:本题主要考查函数奇偶性的应用,以及对数的图象和性质,利用奇偶性的对应建立方程是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、当直线l1与l2的斜率k1,k2满足k1•k2=-1时,两直线一定垂直
B、直线Ax+By+C=0的斜率为-
A
B
C、过(x1,y1),(x2,y2)两点的所有直线的方程
y-y1
y2-y1
=
x-x1
x2-x1
D、经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x2-1)=logm
x2
2-x2
(m>O且m≠1)
(1)求函数f(x)的解析式,并判断奇偶性;
(2)解关于x的方程f(x)=logm
1
x

(3)若m>1,解关于x的不等式f(x)≥logm(3x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
4x+3y≤20
x-3y≤2
x,y∈N+
,求z=7x+5y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)在区间[0,+∞)为单调减函数,若f(1)<f(lgx),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数且f(1)=2,当x1、x2∈[-1,1],且x1+x2≠0时,有
f(x1)+f(x2)
x1+x2
>0,若f(x)≥m2-2am-5对所有x∈[-1,1]、a∈[-1,1]恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列说法:
①函数y=-cos2x的最小正周期是π;
②终边在y轴上的角的集合是{a|a=
2
, k∈Z}

③在同一直角坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④把函数y=3sin(2x+
π
3
)
的图象向右平移
π
6
个单位长度得到函数y=3sin2x的图象;
⑤函数y=sin(x-
π
2
)
在[0,π]上是减函数.
其中,正确的说法是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10.则a10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
2
i-1
,则图中表示z的共轭复数的点是(  )
A、AB、BC、CD、D

查看答案和解析>>

同步练习册答案