精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(2,3),则$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{a}$-$\overrightarrow{b}$方向上的投影为6$\sqrt{2}$.

分析 根据向量的坐标运算和向量投影的定义即可求出

解答 解:∵向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(2,3),
∴$\overrightarrow{a}$+$\overrightarrow{b}$=(5,7),$\overrightarrow{a}$-$\overrightarrow{b}$=(1,1),
∴($\overrightarrow{a}$+$\overrightarrow{b}$)($\overrightarrow{a}$-$\overrightarrow{b}$)=57=12,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{2}$,
∴$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{a}$-$\overrightarrow{b}$方向上的投影为$\frac{(\overrightarrow{a}+\overrightarrow{b})(\overrightarrow{a}-\overrightarrow{b})}{|\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{12}{\sqrt{2}}$=6$\sqrt{2}$,
故答案为:6$\sqrt{2}$.

点评 本题考查了向量的坐标运算和向量投影的定义,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.《九章算术》是东方数学思想之源,在卷五《商功》中有以下问题:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?译文:如图所示的几何体是三个侧面皆为等腰梯形,其他两面为直角三角形的五面体,(前端)下宽6尺,上宽一丈,深3尺,末端宽8尺,无深,长7尺,则它的体积是84立方尺.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD⊥底面ABCD,PA⊥PC;
(1)求证:平面PAB⊥平面PCD;
(2)若过点B的直线l垂直平面PCD,求证:l∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P(x,y)为区域$\left\{\begin{array}{l}(x-y)(x+y)≥0\\-1≤x≤1\end{array}\right.$内的任意一点,A(2,1),则$\overrightarrow{OA}•\overrightarrow{OP}$的最大值,最小值分别为(  )
A.3,-3B.1,-3C.1,-1D.3,-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,一动圆经过点($\frac{1}{2}$,0)且与直线x=-$\frac{1}{2}$相切,设该动圆圆心的轨迹方程为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)设P是曲线E上的动点,点P的横坐标为x0,点B,C在y轴上,△PBC的内切圆的方程为(x-1)2+y2=1,将|BC|表示成x0的函数,并求△PBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:x2=2py(p>0),直线l:y=-2,且抛物线的焦点到直线l的距离为3.
(Ⅰ)求抛物线的方程;
(Ⅱ)动点P在直线l上,过P点作抛物线的切线,切点分别为A,B,线段AB的中点为Q,证明:PQ⊥x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等比数列{an}的公比为q,前n项和为Tn.(  )
A.若q>1,则数列{Tn}单调递增B.若数列{Tn}单调递增,则q>1
C.若Tn>0,则数列{Tn}单调递增D.若数列{Tn}单调递增,则Tn>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex(sinx+cosx).
(1)如果对于任意的x∈[0,$\frac{π}{2}$],f(x)≥kx+excosx恒成立,求实数k的取值范围;
(2)若x∈[-$\frac{2015π}{2}$,$\frac{2017π}{2}$],过点M($\frac{π-1}{2}$,0)作函数f(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{xn},求数列{xn}的所有项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某电商在6月18日之后,随机抽取100名顾客进行回访,按顾客的年龄分成6组,得到如下频数分布表:
 顾客年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65]
 频数 4 24 32 20 16 4
(1)在表中作出这些数据的频率分布直方图;
(2)根据(1)中的频率分布直方图,求这100名顾客年龄的平均数;
(3)用分层抽样的方法从这100名顾客中抽取25人,再从抽取的25人中随机抽取2人,求年龄在[25,35)内的顾客人数X的分布列与数学期望.

查看答案和解析>>

同步练习册答案