精英家教网 > 高中数学 > 题目详情
6.函数y=cos$\frac{πx}{3}$的值域是[-1,1].

分析 根据三角函数的性质即可得到结论.

解答 解:∵函数的定义域为R,
∴-1≤cos$\frac{πx}{3}$≤1,
即-1≤y≤1,
故函数的值域为[-1,1],
故答案为:[-1,1]

点评 本题主要考查三角函数的值域的求解,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.把一个三棱锥适当调整位置,可以使它的三视图(正视图,侧视图,俯视图)都是矩形,形状及尺寸如图所示,则这个三棱锥的体积是(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点M(4,-4)在抛物线C:y2=2px上,直线l与C交于A,B,求其准线上是否有存在一点N,使四边形AMBN为菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知m、n为正整数,a>0且a≠1,且logam+loga(1+$\frac{1}{m}$)+loga(1+$\frac{1}{m+1}$)+…+loga(1+$\frac{1}{m+n-1}$)=logam+logan,求$\frac{m}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα=$\frac{3}{2}$,tanβ=$\frac{3}{5}$,求tan(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.圆(x-r)2+y2=r2(r>0),点M在圆上,O为原点,以∠MOx=φ为参数,那么圆的参数方程为$\left\{\begin{array}{l}{x=r+r•cos2φ}\\{y=r•sin2φ}\end{array}\right.$ (φ为参数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=axn-lnx-1(n∈N*,n≥2,a>1).
(Ⅰ)若a=2,n=2,求函数f(x)的极值;
(Ⅱ)若函数f(x)存在两个零点x1,x2
(i)求a的取值范围;
(ii)求证:x1x2>e${\;}^{\frac{2}{n}-2}$(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD为菱形,MA⊥平面ABCD,四边形ADNM是平行四边形.
(Ⅰ)求证:MB∥平面CDN;
(Ⅱ)求证:平面AMC⊥平面BDN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若定义在R上的函数f(x)满足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)•x,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a.
(Ⅰ)求函数f(x)解析式;
(Ⅱ)求函数g(x)单调区间;
(Ⅲ)试比较|$\frac{e}{x}$-lnx|+lnx和ex-1+a的大小,并说明理由.

查看答案和解析>>

同步练习册答案