精英家教网 > 高中数学 > 题目详情
18.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,且底面ABCD为直角梯形,∠BAD=90°,AB∥DC.已知AD=DC=PA=1,AB=2.
(Ⅰ) 求证:平面PAD⊥平面PCD;
(Ⅱ) 设M为PB上的点,且PM=$\frac{1}{3}$PB,求证:PD∥平面ACM;
(Ⅲ) 在(Ⅱ)的条件下,求二面角P-AC-M的余弦值.

分析 (Ⅰ)以A为原点,AD,AB,AP所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能证明平面PAD⊥平面PCD.
(Ⅱ) 求出平面ACM的法向量和$\overrightarrow{PD}$=(1,0,-1),由此利用向量法能证明PD∥平面ACM.
(Ⅲ) 求出平面ACP的法向量和平面ACM的法向量,利用向量法能求出二面角P-AC-M的余弦值.

解答 证明:(Ⅰ)如图,以A为原点,AD,AB,AP所在直线为x,y,z轴,建立空间直角坐标系,
依题意可得A(0,0,0),B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),
∵$\overrightarrow{AD}$=(1,0,0),$\overrightarrow{AP}$=(0,0,1),$\overrightarrow{DC}$=(0,1,0),
∴$\overrightarrow{AD}•\overrightarrow{DC}$=0,$\overrightarrow{AP}•\overrightarrow{DC}$=0.
∵AD∩AP=A,∴DC⊥平面PAD.
∵DC?平面PCD,
∴平面PAD⊥平面PCD.
(Ⅱ)∵PM=$\frac{1}{3}$PB,∴M点的坐标为(0,$\frac{2}{3},\frac{2}{3}$).
∴$\overrightarrow{AM}$=(0,$\frac{2}{3},\frac{2}{3}$),$\overrightarrow{CM}$=(-1,-$\frac{1}{3}$,$\frac{2}{3}$).
设平面ACM的法向量为$\overrightarrow{n}$=(x,y,z),
则有$\left\{\begin{array}{l}{\frac{2}{3}y+\frac{2}{3}z=0}\\{-x-\frac{1}{3}y+\frac{2}{3}z=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,-1,1),
∵$\overrightarrow{PD}$=(1,0,-1),∴$\overrightarrow{PD}$$•\overrightarrow{n}$=0,即$\overrightarrow{PD}⊥\overrightarrow{n}$.
∵PD?平面ACM,
∴PD∥平面ACM.
解:(Ⅲ) 设平面ACP的法向量为$\overrightarrow{m}$=(a,b,c),
∵$\overrightarrow{AP}$=(0,0,1),$\overrightarrow{AC}$=(1,1,0),
则有$\overrightarrow{m}•\overrightarrow{AP}=0,\overrightarrow{m}•\overrightarrow{AC}=0$,∴$\left\{\begin{array}{l}{c=0}\\{a+b=0}\end{array}\right.$,
令a=1,得$\overrightarrow{m}$=(1,-1,0).
由(Ⅱ)可知平面ACM的法向量为$\overrightarrow{n}$=(1,-1,1),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{2}•\sqrt{3}}$=$\frac{\sqrt{6}}{3}$.
即二面角P-AC-M的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题考查面面垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AD⊥A1B,垂足为D.
(Ⅰ)求证:AD⊥平面A1BC;
(Ⅱ)若$AD=\frac{{\sqrt{3}}}{2}$,AB=BC=1,P为AC的中点,求二面角P-A1B-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是一个空间几何体的三视图,则该几何体为六棱台.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知方程$\widehat{y}$=0.85x-82.71是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm,$\widehat{y}$的单位是kg,那么针对某个体(160,53)的残差是-0.29.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为(  )
A.64B.$\frac{64}{3}$C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱猪ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,A1A=AB=2,E为棱AA1的中点.
(1)证明:B1C1⊥CE;
(2)求二面角B1-CE-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.电影《功夫熊猫3》预计在2016年1月29日上映,某地电影院为了了解当地影迷对票价的看法,进行了一次调研,得到了票价x(单位:元)与渴望观影人数y(单位:万人)的结果如表:
 x(单位:元) 30 40 50 60
 y(单位:万人) 4.5 4 3 2.5
(1)若y与x具有较强的相关关系,试分析y与x之间是正相关还是负相关;
(2)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)根据(2)中求出的线性回归方程,预测票价定为多少元时,能获得最大票房收入.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overrightarrow{x}\overrightarrow{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{-2}}$,$\overrightarrow{a}$=$\overrightarrow{y}$-$\widehat{b}$$\overrightarrow{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该奶茶店的这种饮料销量y(杯),得到如表数据:
日    期1月11日1月12日1月13日1月14日1月15日
平均气温x(℃)91012118
销量y(杯)2325302621
(1)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\widehaty$=$\widehatb$x+$\widehata$.
(3)若1月份该地区平均气温为12℃,试根据(2)求出的线性回归方程,预测本月共销售该种饮料多少杯?
(参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\\{\;}\end{array}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某办公室5位职员的月工资(单位:元)分别为x1,x2,x3,x4,x5,他们月工资的均值为3500,方差为45,从下月开始每人的月工资都增加100元,那么这5位职员下月工资的均值和方差分别为(  )
A.3500,55B.3500,45C.3600,55D.3600,45

查看答案和解析>>

同步练习册答案