精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R),且函数f(x)的图象关于原点
对称,其图象在x=3处的切线方程为8x-y-18=0
(1)求f(x)的解析式;
(2)是否存在区间[m,n],使得函数g(x)的定义域和值域均为[m,n],且其解析式为f(x)的解析式?若存在,求出这样一个区间[m,n];若不存在,则说明理由.
分析:(1)根据题意,f(-x)+f(x)=0恒成立,利用比较系数法可得b=d=0,然后根据导数的几何意义,得出f'(3)=8且f(3)=6,联解方程组可得a、c的值,最终可得f(x)的解析式;
(2)用直线y=x与函数y=f(x)联解,得出交点横坐标为0或±
6
,根据题意得出[m,n]可能的区间为[-
6
,0] 或[0,
6
] 或[-  
6
 ,
6
]
.然后利用导数来研究函数f(x)的单调性,得出其单调区间后,分别讨论它在各区间上的值域,对照题意可得符合条件的区间为[-
6
6
]
解答:解:(1)∵f(x)的图象关于原点对称,
∴f(-x)+f(x)=0恒成立,
即2bx2+2d=0,∴b=d=0
又f(x)的图象在x=3处的切线方程为8x-y-18=0,
即y-6=8(x-3),…(2分)
∴f'(3)=8,且f(3)=6.而f(x)=ax3+cx,
∴f'(x)=3ax2+c…(3分)
f′(3)=27a+c=8
f(3)=27a+3c=6
解得
a=
1
3
c=-1

故所求的解析式为f(x)=
1
3
x3-x
.…(6分)
(2)解
y=
1
3
x3-x
y=x
得x=0或x=±
6

又f'(x)=x2-1,由f'(x)=0得x=±1,
且当x=[-
6
,-1)或x=(1,
6
]
时,f'(x)>0;…(8分)
当x∈(-1,1)时f'(x)<0.
f(x)在[-
6
,-1]和[1,
6
]
递增;在[-1,1]上递减…(9分)
f(x)在[-
6
6
]
上的极大值和极小值分别为f(-1)=
2
3
f(1)=-
2
3

-
6
<-
2
3
2
3
6

故存在这样的区间[m,n],其中一个区间为[-
6
6
]
.…(12分)
点评:本题考查了函数在某点取得极值的条件、利用导数求闭区间上函数的最值和导数的几何意义等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案