精英家教网 > 高中数学 > 题目详情
16.已知圆C1:x2+y2=b2与椭圆C2:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,若在椭圆C2上存在一点P,使得由点P所作的圆C1的两条切线互相垂直,则椭圆C2的离心率的取值范围是(  )
A.$[\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2}]$B.$[\frac{1}{2},1)$C.$[\frac{{\sqrt{3}}}{2},1)$D.$[\frac{{\sqrt{2}}}{2},1)$

分析 设P(m,n),由题意列出方程组求出$\frac{{b}^{2}}{{a}^{2}}$=$\frac{{m}^{2}-{n}^{2}}{2{m}^{2}}$,从而$e=\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{\frac{{b}^{2}}{{m}^{2}}}$,由此能求出椭圆C2的离心率的取值范围.

解答 解:设P(m,n),由题意知$\left\{\begin{array}{l}{{m}^{2}+{n}^{2}=2{b}^{2}}\\{\frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{{b}^{2}}=1}\end{array}\right.$,
∴b2m2=$\frac{{m}^{2}+{n}^{2}}{2}$a2-a2n2=${a}^{2}•\frac{{m}^{2}-{n}^{2}}{2}$,
∴$\frac{{b}^{2}}{{a}^{2}}$=$\frac{{m}^{2}-{n}^{2}}{2{m}^{2}}$,
∴$e=\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{\frac{2{m}^{2}-{m}^{2}+{n}^{2}}{2{m}^{2}}}$=$\sqrt{\frac{{m}^{2}+{n}^{2}}{2{m}^{2}}}$=$\sqrt{\frac{{b}^{2}}{{m}^{2}}}$,
∵-a≤m≤a,
∴m=b时,emax→$\sqrt{2-1}$=1,
m=a时,emin=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{\frac{{b}^{2}}{{a}^{2}}}$,∴$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{2}$,
∴emin=$\sqrt{1-\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$,
又0<e<1,∴椭圆C2的离心率的取值范围是[$\frac{\sqrt{2}}{2}$,1).
故选:D.

点评 本题考查椭圆的离心率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的极坐标方程为$ρcos({θ+\frac{π}{4}})=2\sqrt{2}$.
(1)求曲线C1的参数方程与曲线C2的直角坐标方程;
(2)记曲线C1与曲线C2交于M,N两点,求线段 MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:
①若m⊥n,m⊥α,n?α,则n∥α;
②若m⊥n,m∥α,n∥β,则α⊥β;
③若α⊥β,α∩β=m,n?α,n⊥m则n⊥β;
④若n?α,m?β,α与β相交且不垂直,则n与m一定不垂直.
其中,所有真命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正四棱锥P-ABCD的底面长为2,侧棱长为$\sqrt{10}$,点O为底面ABCD的中心
(Ⅰ)求证:PA⊥BD;
(Ⅱ)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.正四棱台两底面边长分别为2和4.
(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;
(2)若棱台的侧面积等于两底面面积之和,求它的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求值:
(1)${27^{\frac{2}{3}}}-{({\root{3}{-125}})^2}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+{log_2}3×{log_3}4$
(2)sin45°cos15°-cos45°sin15°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知M(x0,y0)是双曲线x2-$\frac{{y}^{2}}{2}$=1上的一点,F1,F2为C的两个焦点,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$<0,则y0的取值范围为(  )
A.(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)B.(-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$)C.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)D.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(log2x)=x-$\frac{1}{x}$
(1)求函数f(x)的表达式,并说明函数的单调性、奇偶性(无需证明);
(2)设集合A=$\{x|x=sinθ+cosθ,θ∈(-\frac{π}{2},0)\}$,若函数y=f(x)(x∈A),且f(1-m)+f(1-m2)<0,求实数 m的取值范围;
(3)若不等式2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数 m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M($\sqrt{2}$,1),且焦点为F1(-$\sqrt{2}$,0)
(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,0)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q,满足$\frac{|\overrightarrow{AP}|}{|\overrightarrow{PB}|}$=$\frac{|\overrightarrow{AQ}|}{|\overrightarrow{QB}|}$,证明:点Q总在某定直线上.

查看答案和解析>>

同步练习册答案