4£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+x-c£¨ÆäÖÐa£¬c¡ÊR£©£¬a£¬cµÄµÈ²îÖÐÏîÊÇ2£¬aÊDZ߳¤Îª$\frac{3\sqrt{3}}{2}$µÄÕýÈý½ÇÐεÄÍâ½ÓÔ²°ë¾¶£®£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÈôÊýÁÐ{an}Âú×ã${a_1}=1£¬3{a_{n+1}}=1-\frac{1}{{f£¨{a_n}+1£©-f£¨{a_n}£©-\frac{3}{2}}}£¨n¡Ê{N^*}£©$£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éè${b_n}=\frac{1}{a_n}$£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÇóÊýÁÐ{Sn•cos£¨bn¦Ð£©}µÄǰnÏîºÍTn£®

·ÖÎö £¨1£©ÓÉÕýÈý½ÇÐεÄÐÔÖʿɵÃa=$\frac{3}{2}$£¬ÔÙÓɵȲîÊýÁеÄÐÔÖʿɵÃa+c=4£¬¼´¿ÉµÃµ½c£¬½ø¶øµÃµ½¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Çó³öf£¨an+1£©£¬f£¨an£©£¬´úÈëÒÑÖªµÄµÈʽÖл¯¼òµÃµ½ÊýÁÐ{$\frac{1}{{a}_{n}}$}ΪµÈ²îÊýÁУ¬Çó³öÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄͨÏʽºó¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÓÉbn=$\frac{1}{{a}_{n}}$£¬Çó³öcos£¨bn¦Ð£©£¬È»ºó·ÖnΪżÊýºÍÆæÊý£¬ÌÖÂÛÇó½âÊýÁÐ{Sn•cos£¨bn¦Ð£©}µÄǰnÏîºÍTn£®

½â´ð ½â£º£¨1£©aÊDZ߳¤Îª$\frac{3\sqrt{3}}{2}$µÄÕýÈý½ÇÐεÄÍâ½ÓÔ²°ë¾¶£¬
¿ÉµÃa=$\frac{3\sqrt{3}}{2}$•$\frac{\sqrt{3}}{3}$=$\frac{3}{2}$£¬
ÓÉa£¬cµÄµÈ²îÖÐÏîÊÇ2£¬¿ÉµÃa+c=4£¬½âµÃc=$\frac{5}{2}$£¬
Ôòf£¨x£©=$\frac{3}{2}$x2+x-$\frac{5}{2}$£»
£¨2£©¡ßf£¨an+1£©-f£¨an£©=$\frac{3}{2}$£¨an+1£©2+£¨an+1£©-$\frac{3}{2}$an2-an=3an+$\frac{5}{2}$£®
ÓÉ${a_1}=1£¬3{a_{n+1}}=1-\frac{1}{{f£¨{a_n}+1£©-f£¨{a_n}£©-\frac{3}{2}}}£¨n¡Ê{N^*}£©$
=1-$\frac{1}{3{a}_{n}+1}$=$\frac{3{a}_{n}}{3{a}_{n}+1}$£®
¼´$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+3£¬
¹ÊÊýÁÐ{$\frac{1}{{a}_{n}}$}ΪÊ×ÏîΪ1£¬¹«²îΪ3µÄµÈ²îÊýÁУ®
¡à$\frac{1}{{a}_{n}}$=1+3£¨n-1£©=3n-2£¬
¼´ÓÐan=$\frac{1}{3n-2}$£»
£¨3£©¡ßbn=3n-2£¬
¡àcos£¨bn¦Ð£©=cos£¨3n-2£©¦Ð=$\left\{\begin{array}{l}{-1£¬n=2k-1}\\{1£¬n=2k}\end{array}\right.$kΪÕýÕûÊý£¬
¼´Sn•cos£¨bn¦Ð£©=£¨-1£©nSn£¬
¡àTn=-S1+S2-S3+S4-¡­+£¨-1£©nSn£®
¢Ùµ±nΪżÊýʱ£¬Tn=£¨-S1+S2£©+£¨-S3+S4£©+¡­+£¨-Sn-1+Sn£©
=b2+b4+¡­+bn=$\frac{3{n}^{2}+2n}{4}$£»
¢Úµ±nÎªÆæÊýʱ£¬
Tn=Tn-1-Sn=$\frac{3£¨n-1£©^{2}+2£¨n-1£©}{4}$-$\frac{n£¨3n-1£©}{2}$=$\frac{-3{n}^{2}-2n+1}{4}$£®
×ÛÉÏ£¬Tn=$\left\{\begin{array}{l}{\frac{-3{n}^{2}-2n+1}{4}£¬nÎªÆæÊý}\\{\frac{3{n}^{2}+2n}{4}£¬nΪżÊý}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ½âÎöʽµÄÇ󷨣¬¿¼²éÁ˵ȲîÊýÁеÄÐÔÖʺÍÊýÁеĺ¯ÊýÌØÐÔ£¬¿¼²éÁËÊýÁеĵÝÍÆÊ½¼°ÊýÁеĺͣ¬¿¼²éÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨£¬¿¼²éÁËѧÉú×ۺϴ¦ÀíºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊÇÓÐÒ»¶¨ÄѶÈÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÊýÁÐ{an}ÖУ¬an+1=2+$\frac{2}{3}$Sn£¬ÇÒa1=3£¬Çóan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®5005¡Á50065006-5006¡Á50055005µÄÖµÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®-1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÉèijÖÖ²úÆ·µÄÐèÇó¹ØÏµÎª3q+4p=100£¬ÆäÖÐqÊDzúÁ¿£¬pÊǸòúÆ·µÄ¼Û¸ñ£¬ÇóÏúÊÛ10¼þ¸Ã²úƷʱµÄ×ÜÊÕÈëºÍƽ¾ùÊÕÈ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®²Â²â£¨1-$\frac{4}{1}$£©£¨1-$\frac{4}{9}$£©¡­[1Ò»$\frac{4}{£¨2n-1£©^{2}}$]¶Ôn¡ÊNÇÒn¡Ý1³ÉÁ¢µÄ-¸ö±í´ïʽΪ £¨¡¡¡¡£©
A£®-$\frac{n+2}{n}$B£®$\frac{2n+1}{2n-1}$C£®$-\frac{2n+1}{2n-1}$D£®-$\frac{n+1}{n-1}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªf£¨x£©=ax+sinx£¨a¡ÊR£©£®
£¨1£©µ±a=$\frac{1}{2}$ʱ£¬Çóf£¨x£©ÔÚ[0£¬¦Ð]ÉϵÄ×îÖµ£»
£¨2£©Èôº¯Êýg£¨x£©=f£¨x£©+f¡ä£¨x£©ÔÚÇø¼ä[-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$]Éϲ»µ¥µ÷£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚÈçͼÖУ¬Í¼£¨b£©ÊÇͼ£¨a£©ÖÐʵÎï»­³öµÄÕýÊÓͼºÍ¸©ÊÓͼ£¬ÄãÈÏΪÕýÈ·µÄÂð£¿Èç¹û²»ÕýÈ·£¬ÇëÕÒ³ö´íÎ󲢸ÄÕý£¬È»ºó»­³ö²àÊÓͼ£¨³ß´ç²»×÷ÑϸñÒªÇó£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÖ±ÏßLÓëÏßy=x3-3x2+2xÏàÇУ¬·Ö±ðÇóÖ±ÏßlµÄ·½³Ì£¬Ê¹Ö®Âú×㣺£¨1£©ÇеãΪ£¨0£¬0£©£» £¨2£©¾­¹ýµã£¨0.0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÊýÁÐ{an}µÄͨÏîÊÇan=41-2n£¬ÊýÁÐ{bn}µÄÿ-Ïî¶¼ÓÐbn=|an|£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸