精英家教网 > 高中数学 > 题目详情

已知向量,函数的图像与直线的相邻两个交点之间的距离为
(1)求的值;
(2)求函数上的单调递增区间.

(1);(2)

解析试题分析:(1)先由向量数量积的坐标运算及倍角公式、两角和差公式得到,再由图像与直线的相邻两个交点之间的距离为,得,再由最小正周期的计算公式得出;(2)由,再由余弦函数的单调性可得的单调增区间为
试题解析:(1)              1分


            5分
由题意,                    6分
(2)

时,单调递增                  9分
的单调增区间为                    12分.
考点:1.向量的数量积;2.三角恒等变换;3.三角函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当,求上有最大值;
(3)设函数具有“性质”,且当时,.若交点个数为2013,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于的一元二次函数,设集合,分别从集合P和Q中随机取一个数作为
(1)求函数有零点的概率;
(2)求函数在区间上是增函数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已函数.
(1)作出函数的图像;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,不等式的解集为.
(1)求的值;
(2)若对一切实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的值;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题p:f(x)=在区间(1,+∞)上是减函数;命题q:x1,x2是方程x2-ax-2=0的两个实根,且不等式m2+5m-3≥|x1-x2|对任意的实数a∈[-1,1]恒成立.若p∧q为真,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.
 
(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;
(2)当AP为多少时,“总噪音影响度”最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=,若关于x的方程2[f(x)]2-(2a+3)·f(x)+3a=0有五个不同的实数解,求a的取值范围.

查看答案和解析>>

同步练习册答案