精英家教网 > 高中数学 > 题目详情
设函数f(x)=
2x-1,x≤0
log2(x+1),x>0
如果f(x0)<1,求x0的取值范围.
分析:先确定要求值的自变量x0属于哪一段区间,然后按该段的表达式去建立不等关系,分别解出满足条件的范围,最后将它们合并一下即可.
解答:解:当x0≤0时,f(x0)=2x0-1<1,解得:x0≤0.
当x0>0时,f(x0)=log2(x0+1)<1=log22,解得:0<x0<1.
综上所述:x0的取值范围是(-∞,1)
点评:本题主要考查了分段函数的有关知识,求分段函数的函数值的方法:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x+1x2+2

(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若对一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x
|x|+1
(x∈R)
,区间M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)设函数f(x)=
2x+3
3x-1
,则f-1(1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
x+2
,点A0表示原点,点An=[n,f(n)](n∈N*).若向量
an
=
A0A1
+
A1A2
+…+
An-1An
,θn
an
i
的夹角[其中
i
=(1,0)]
,设Sn=tanθ1+tanθ2+…+tanθn,则
lim
n→∞
Sn
=
3
4
2
3
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x-3,x≥1
1-3x
x
,0<x<1
,若f(x0)=1,则x0等于(  )

查看答案和解析>>

同步练习册答案