精英家教网 > 高中数学 > 题目详情
16.已知圆的方程为x2+y2-2x-6y+1=0,那么圆心坐标为(  )
A.(-1,-3)B.(1,-3)C.(1,3)D.(-1,3)

分析 将已知圆化成标准方程并对照圆标准方程的基本概念,即可得到所求圆心坐标.

解答 解:将圆x2+y2-2x-6y+1=0化成标准方程,得(x-1)2+(y-3)2=9,
∴圆表示以C(1,3)为圆心,半径r=3的圆.
故选:C.

点评 本题给出圆的一般方程,求圆心的坐标.着重考查了圆的标准方程与一般方程的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.有4名男医生、3名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有(  )
A.A${\;}_{4}^{2}$•A${\;}_{3}^{1}$B.C${\;}_{4}^{2}$•C${\;}_{3}^{1}$
C.C${\;}_{7}^{3}$--C${\;}_{4}^{2}$•C${\;}_{3}^{1}$D.A${\;}_{7}^{3}$--A${\;}_{4}^{2}$•A${\;}_{3}^{1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2)则f(x)=2sin($\frac{1}{2}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设n=${∫}_{1}^{2}$$\frac{{x}^{2}-1}{x}$dx,则${e^{n-\frac{3}{2}}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.甲、乙两名同学8次数学测验成绩如茎叶图所示,$\overline{x}$1,$\overline{x}$2分别表示甲、乙两名同学8次数学测验成绩的平均数,s1,s2分别表示甲、乙两名同学8次数学测验成绩的标准差,则有(  )
A.$\overline{x}$1>$\overline{x}$2,s1<s2B.$\overline{x}$1=$\overline{x}$2,s1<s2C.$\overline{x}$1=$\overline{x}$2,s1=s2D.$\overline{x}$1<$\overline{x}$2,s1>s2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3+$\frac{5}{2}{x^2}$+ax+b,g(x)=x3+$\frac{7}{2}{x^2}$+lnx+b,(a,b为常数).
(Ⅰ)若g(x)在x=1处的切线过点(0,-5),求b的值;
(Ⅱ)设函数f(x)的导函数为f′(x),若关于x的方程f(x)-x=xf′(x)有唯一解,求实数b的取值范围;
(Ⅲ)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+ln2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图1,直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=2AB=4,BC=2.AE∥BC交CD于点E,点G,H分别在线段DA,DE上,且GH∥AE.将图1中的△AED沿AE翻折,使平面ADE⊥平面ABCE(如图2所示),连结BD、CD,AC、BE.

(Ⅰ)求证:平面DAC⊥平面DEB;
(Ⅱ)当三棱锥B-GHE的体积最大时,求直线BG与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知执行如图所示的程序框图,输出的S=485,则判断框内的条件可以是(  )
A.k<5?B.k>7?C.k≤5?D.k≤6?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足Sn=$\frac{n}{2}{a_n}(n∈{N^*})$,(其中Sn是数列{an}的前n项和,且a2=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\left\{\begin{array}{l}{a_n}(n为奇数)\\{a_{2^n}}(n为偶数)\end{array}$,求数列{bn}的前2n项和T2n

查看答案和解析>>

同步练习册答案