精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2)则f(x)=2sin($\frac{1}{2}$x+$\frac{π}{6}$).

分析 根据图象求出A,T,求出ω,图象经过(0,1),求出φ,然后求f(x)的解析式

解答 解:(1)由题意可得:A=2,$\frac{T}{2}$=2π,T=4π
∴ω=$\frac{2π}{T}$=$\frac{2π}{4π}$=$\frac{1}{2}$,
∴f(x)=2sin($\frac{1}{2}$x+φ)
∴f(0)=2sinφ=1,
由|φ|<$\frac{π}{2}$),
∴φ=$\frac{π}{6}$.(
∴$f(x)=2sin(\frac{1}{2}x+\frac{π}{6})$,
故答案为:2sin($\frac{1}{2}$x+$\frac{π}{6}$)

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查计算能力,视图能力,是基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.直线l的斜率是-1,且过曲线$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=3+2sinθ}\end{array}\right.$(θ为参数)的对称中心,则直线l的方程是x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,a、b、c分别为角A、B、C所对应的三角形的边长,若4a$\overrightarrow{BC}$+2b$\overrightarrow{CA}$+3c$\overrightarrow{AB}$=$\overrightarrow{0}$,则cosB=(  )
A.$-\frac{29}{36}$B.$\frac{29}{36}$C.$\frac{11}{24}$D.$-\frac{11}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若△ABC满足(2$\overrightarrow{CA}$-$\overrightarrow{CB}$)•($\overrightarrow{CA}$-2$\overrightarrow{CB}$)=0,且|$\overrightarrow{AB}$|=2,则|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x,y满足约束条件:$\left\{\begin{array}{l}{x>0}\\{x+2y≥3}\\{2x+y≤3}\end{array}\right.$;则x-y的取值范围为(  )
A.[0,3]B.[0,$\frac{3}{2}$]C.[-$\frac{3}{2}$,0]D.[-3,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z满足z(1+i)3=1-i,则复数z对应的点在(  )上.
A.直线y=-$\frac{1}{2}$xB.直线y=$\frac{1}{2}$xC.直线x=-$\frac{1}{2}$D.直线 y=-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示,其中俯视图为正方形及其一条对角线,则该几何体的体积为(  )
A.32B.48C.56D.96

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆的方程为x2+y2-2x-6y+1=0,那么圆心坐标为(  )
A.(-1,-3)B.(1,-3)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z满足(1+i)z=2i(i为虚数单位),则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案