精英家教网 > 高中数学 > 题目详情
12.已知复数z满足z(1+i)3=1-i,则复数z对应的点在(  )上.
A.直线y=-$\frac{1}{2}$xB.直线y=$\frac{1}{2}$xC.直线x=-$\frac{1}{2}$D.直线 y=-$\frac{1}{2}$

分析 把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由z(1+i)3=1-i,得$z=\frac{1-i}{(1+i)^{3}}=\frac{1-i}{1+3i-3-i}=\frac{1-i}{-2+2i}$=$\frac{(1-i)(-2-2i)}{(-2+2i)(-2-2i)}=-\frac{4}{8}=-\frac{1}{2}$.
∴复数z对应的点在直线x=-$\frac{1}{2}$上.
故选:C.

点评 本题考查了复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2>1},集合B={x|x(x-2)<0},则A∩B=(  )
A.{x|1<x<2}B.{x|x>2}C.{x|0<x<2}D.{x|x≤1,或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是$\frac{π}{3}$,若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2$\sqrt{3}$cosxsinx+2cos2x
(1)求$f(\frac{π}{6})$;
(2)求f(x)的最小正周期;
(3)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2)则f(x)=2sin($\frac{1}{2}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的值为(  )
A.3B.$\sqrt{3}$C.$\sqrt{7}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设n=${∫}_{1}^{2}$$\frac{{x}^{2}-1}{x}$dx,则${e^{n-\frac{3}{2}}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3+$\frac{5}{2}{x^2}$+ax+b,g(x)=x3+$\frac{7}{2}{x^2}$+lnx+b,(a,b为常数).
(Ⅰ)若g(x)在x=1处的切线过点(0,-5),求b的值;
(Ⅱ)设函数f(x)的导函数为f′(x),若关于x的方程f(x)-x=xf′(x)有唯一解,求实数b的取值范围;
(Ⅲ)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+ln2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,斜率为$\sqrt{3}$的直线l经过双曲线Γ的右焦点F2与双曲线Γ在第一象限交于点,若△PF1F2是等腰三角形,则双曲线Γ的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{3}$+1C.$\frac{\sqrt{3}-1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

同步练习册答案