·ÖÎö £¨1£©°Ñx=-c´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=\frac{{b}^{2}}{{a}^{2}}£¨{a}^{2}-{c}^{2}£©$£¬½âµÃy£¬¿ÉµÃ|MN|=$\frac{2{b}^{2}}{a}$£¬ÀûÓá÷AMNµÄÃæ»ý$\frac{2+\sqrt{2}}{2}$=$\frac{1}{2}|MN||AF|$£¬»¯Îª£º2b2£¨a+c£©=£¨2+$\sqrt{2}$a£©£¬Óë$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÉèP£¨-2£¬t£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ïß¶ÎMNµÄÖеãQ£¨x0£¬y0£©£¬F£¨-1£¬0£©£®Ö±ÏßMNµÄбÂÊΪ0ʱ£¬²»Âú×ãÌâÒ⣮ÉèÖ±ÏßMNµÄ·½³ÌΪ£ºmy=x+1£¬m=0ʱ£¬MN¡ÍxÖᣬ¿ÉµÃ¡÷PMN²»ÊǵȱßÈý½ÇÐΣ¬ÉáÈ¥£®m¡Ù0ʱ£®ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨m2+2£©y2-2my-1=0£®ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÆäÖеã×ø±ê¹«Ê½£¬¼°ÆäPQ¡ÍMN£¬¿ÉµÃ£ºt£¨m2+2£©=3m+2m3£®ÔÙÀûÓÃ|PQ|=$\frac{\sqrt{3}}{2}$|MN|»¯¼ò¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©°Ñx=-c´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=\frac{{b}^{2}}{{a}^{2}}£¨{a}^{2}-{c}^{2}£©$£¬½âµÃy=$¡À\frac{{b}^{2}}{a}$£¬¡à|MN|=$\frac{2{b}^{2}}{a}$£¬¡à¡÷AMNµÄÃæ»ý$\frac{2+\sqrt{2}}{2}$=$\frac{1}{2}|MN||AF|$=$\frac{1}{2}¡Á\frac{2{b}^{2}}{a}$¡Á£¨a+c£©£¬»¯Îª£º2b2£¨a+c£©=£¨2+$\sqrt{2}$a£©£¬Óë$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2ÁªÁ¢½âµÃ£ºc=b=1£¬$a=\sqrt{2}$£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨2£©ÉèP£¨-2£¬t£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ïß¶ÎMNµÄÖеãQ£¨x0£¬y0£©£¬F£¨-1£¬0£©£®
Ö±ÏßMNµÄбÂÊΪ0ʱ£¬²»Âú×ãÌâÒ⣮
ÉèÖ±ÏßMNµÄ·½³ÌΪ£ºmy=x+1£¬
m=0ʱ£¬MN¡ÍxÖᣬ
|MN|=$\frac{2{b}^{2}}{a}$=$\sqrt{2}$£¬µãFµ½Ö±Ïßx=-2µÄ¾àÀëd=1£¬¡÷PMN²»ÊǵȱßÈý½ÇÐΣ¬ÉáÈ¥£®
m¡Ù0ʱ£®
ÁªÁ¢$\left\{\begin{array}{l}{my=x+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬»¯Îª£º£¨m2+2£©y2-2my-1=0£®
¡ày1+y2=$\frac{2m}{{m}^{2}+2}$£¬y1y2=$\frac{-1}{{m}^{2}+2}$£®
¡ày0=$\frac{{y}_{1}+{y}_{2}}{2}$=$\frac{m}{{m}^{2}+2}$£¬x0=my0-1=$\frac{-2}{{m}^{2}+2}$£®
¡ßPQ¡ÍMN£¬¡à$\frac{t-\frac{m}{{m}^{2}+2}}{-2+\frac{2}{{m}^{2}+2}}$¡Á$\frac{1}{m}$=-1£¬»¯Îª£ºt£¨m2+2£©=3m+2m3£®
|PQ|=$\frac{|-2-tm+1|}{\sqrt{1+{m}^{2}}}$=$\frac{|tm+1|}{\sqrt{1+{m}^{2}}}$£®
|MN|=$\sqrt{£¨1+{m}^{2}£©[£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}]}$=$\frac{2\sqrt{2}£¨1+{m}^{2}£©}{2+{m}^{2}}$£®
ÓÖ|PQ|=$\frac{\sqrt{3}}{2}$|MN|£¬¡à$\frac{|tm+1|}{\sqrt{1+{m}^{2}}}$=$\frac{\sqrt{3}}{2}$¡Á$\frac{2\sqrt{2}£¨1+{m}^{2}£©}{2+{m}^{2}}$£¬
»¯Îª£º£¨tm+1£©£¨2+m2£©=$\sqrt{6}$£¨1+m2£©$\sqrt{1+{m}^{2}}$£®
Óët£¨m2+2£©=3m+2m3ÁªÁ¢¿ÉµÃ£ºm2=$\frac{1}{2}$£¬½âµÃm=$¡À\frac{\sqrt{2}}{2}$£®
¡àÖ±ÏßMNµÄ·½³ÌΪ£º$\sqrt{2}x$¡Ày+$\sqrt{2}$=0£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢Ò»Ôª¶þ´ÎµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ð±ÂʼÆË㹫ʽ¡¢µÈ±ßÈý½ÇÐεÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ô² | B£® | ÍÖÔ² | C£® | Å×ÎïÏß | D£® | Ë«ÇúÏß |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | i£¼101£¿ | B£® | i£¾101£¿ | C£® | i¡Ü101£¿ | D£® | i¡Ý101£¿ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com