19£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ¶¥µãΪA£¬×ó½¹µãΪF£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¹ýµãFµÄÖ±Ïßl½»ÍÖÔ²CÓÚM¡¢NÁ½µã£¬µ±l´¹Ö±ÓÚxÖáʱ£¬¡÷AMNµÄÃæ»ýΪ$\frac{2+\sqrt{2}}{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßx=-2ÉÏ´æÔÚµãP£¬Ê¹µÃ¡÷PMNΪµÈ±ßÈý½ÇÐΣ¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©°Ñx=-c´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=\frac{{b}^{2}}{{a}^{2}}£¨{a}^{2}-{c}^{2}£©$£¬½âµÃy£¬¿ÉµÃ|MN|=$\frac{2{b}^{2}}{a}$£¬ÀûÓá÷AMNµÄÃæ»ý$\frac{2+\sqrt{2}}{2}$=$\frac{1}{2}|MN||AF|$£¬»¯Îª£º2b2£¨a+c£©=£¨2+$\sqrt{2}$a£©£¬Óë$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÉèP£¨-2£¬t£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ïß¶ÎMNµÄÖеãQ£¨x0£¬y0£©£¬F£¨-1£¬0£©£®Ö±ÏßMNµÄбÂÊΪ0ʱ£¬²»Âú×ãÌâÒ⣮ÉèÖ±ÏßMNµÄ·½³ÌΪ£ºmy=x+1£¬m=0ʱ£¬MN¡ÍxÖᣬ¿ÉµÃ¡÷PMN²»ÊǵȱßÈý½ÇÐΣ¬ÉáÈ¥£®m¡Ù0ʱ£®ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨m2+2£©y2-2my-1=0£®ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÆäÖеã×ø±ê¹«Ê½£¬¼°ÆäPQ¡ÍMN£¬¿ÉµÃ£ºt£¨m2+2£©=3m+2m3£®ÔÙÀûÓÃ|PQ|=$\frac{\sqrt{3}}{2}$|MN|»¯¼ò¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©°Ñx=-c´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=\frac{{b}^{2}}{{a}^{2}}£¨{a}^{2}-{c}^{2}£©$£¬½âµÃy=$¡À\frac{{b}^{2}}{a}$£¬¡à|MN|=$\frac{2{b}^{2}}{a}$£¬¡à¡÷AMNµÄÃæ»ý$\frac{2+\sqrt{2}}{2}$=$\frac{1}{2}|MN||AF|$=$\frac{1}{2}¡Á\frac{2{b}^{2}}{a}$¡Á£¨a+c£©£¬»¯Îª£º2b2£¨a+c£©=£¨2+$\sqrt{2}$a£©£¬Óë$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2ÁªÁ¢½âµÃ£ºc=b=1£¬$a=\sqrt{2}$£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨2£©ÉèP£¨-2£¬t£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ïß¶ÎMNµÄÖеãQ£¨x0£¬y0£©£¬F£¨-1£¬0£©£®
Ö±ÏßMNµÄбÂÊΪ0ʱ£¬²»Âú×ãÌâÒ⣮
ÉèÖ±ÏßMNµÄ·½³ÌΪ£ºmy=x+1£¬
m=0ʱ£¬MN¡ÍxÖᣬ
|MN|=$\frac{2{b}^{2}}{a}$=$\sqrt{2}$£¬µãFµ½Ö±Ïßx=-2µÄ¾àÀëd=1£¬¡÷PMN²»ÊǵȱßÈý½ÇÐΣ¬ÉáÈ¥£®
m¡Ù0ʱ£®
ÁªÁ¢$\left\{\begin{array}{l}{my=x+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬»¯Îª£º£¨m2+2£©y2-2my-1=0£®
¡ày1+y2=$\frac{2m}{{m}^{2}+2}$£¬y1y2=$\frac{-1}{{m}^{2}+2}$£®
¡ày0=$\frac{{y}_{1}+{y}_{2}}{2}$=$\frac{m}{{m}^{2}+2}$£¬x0=my0-1=$\frac{-2}{{m}^{2}+2}$£®
¡ßPQ¡ÍMN£¬¡à$\frac{t-\frac{m}{{m}^{2}+2}}{-2+\frac{2}{{m}^{2}+2}}$¡Á$\frac{1}{m}$=-1£¬»¯Îª£ºt£¨m2+2£©=3m+2m3£®
|PQ|=$\frac{|-2-tm+1|}{\sqrt{1+{m}^{2}}}$=$\frac{|tm+1|}{\sqrt{1+{m}^{2}}}$£®
|MN|=$\sqrt{£¨1+{m}^{2}£©[£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}]}$=$\frac{2\sqrt{2}£¨1+{m}^{2}£©}{2+{m}^{2}}$£®
ÓÖ|PQ|=$\frac{\sqrt{3}}{2}$|MN|£¬¡à$\frac{|tm+1|}{\sqrt{1+{m}^{2}}}$=$\frac{\sqrt{3}}{2}$¡Á$\frac{2\sqrt{2}£¨1+{m}^{2}£©}{2+{m}^{2}}$£¬
»¯Îª£º£¨tm+1£©£¨2+m2£©=$\sqrt{6}$£¨1+m2£©$\sqrt{1+{m}^{2}}$£®
Óët£¨m2+2£©=3m+2m3ÁªÁ¢¿ÉµÃ£ºm2=$\frac{1}{2}$£¬½âµÃm=$¡À\frac{\sqrt{2}}{2}$£®
¡àÖ±ÏßMNµÄ·½³ÌΪ£º$\sqrt{2}x$¡Ày+$\sqrt{2}$=0£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢Ò»Ôª¶þ´ÎµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ð±ÂʼÆË㹫ʽ¡¢µÈ±ßÈý½ÇÐεÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®×÷³ö²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=cos¦È+1}\\{y{=sin}^{2}¦È-1}\end{array}\right.$ £¨¦ÈΪ²ÎÊý£¬0¡Ü¦È¡Ü2¦Ð£©Ëù±íʾµÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª¼¯ºÏA={0£¬$\frac{¦Ð}{6$£¬$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{2}$£¬$\frac{2¦Ð}{3}$£¬$\frac{3¦Ð}{4}$£¬$\frac{5¦Ð}{6}$£¬¦Ð}£®ÏÖ´Ó¼¯ºÏAÖÐËæ»úѡȡһ¸öÔªËØ£¬Ôò¸ÃÔªËØµÄ
ÓàÏÒֵΪÕýÊýµÄ¸ÅÂÊΪ$\frac{4}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¶¯Ô²¹ý¶¨µãA£¨3£¬0£©£¬ÇÒÓëÔ²£¨x+3£©2+y2=64ÏàÇУ¬Ôò¶¯Ô²µÄÔ²ÐÄPµÄ¹ì¼£ÊÇ£¨¡¡¡¡£©
A£®Ô²B£®ÍÖÔ²C£®Å×ÎïÏßD£®Ë«ÇúÏß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èç¹ûxÊÇʵÊý£¬ÇÒx£¾-1£¬x¡Ù0£¬nΪ´óÓÚ1µÄ×ÔÈ»Êý£¬ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º£¨1+x£©n£¾1+nx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔËÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öµÄS=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÖ±½ÇÈý½ÇÐÎPMNµÄÖ±½Ç¶¥µãΪP£¬ÇÒM¡¢NµÄ×ø±ê·Ö±ðΪ£¨1£¬5£©£¬£¨-3£¬1£©£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÍÖÔ²w£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©¹ýµã£¨0£¬$\sqrt{2}$£©£¬ÍÖÔ²wÉÏÈÎÒâÒ»µãµ½Á½½¹µãµÄ¾àÀëÖ®ºÍΪ4£®
£¨¢ñ£©ÇóÍÖÔ²wµÄ·½³Ì£»
£¨¢ò£©Èçͼ£¬ÉèÖ±Ïßl£ºy=kx£¨k¡Ù0£©ÓëÍÖÔ²w½»ÓÚP£¬AÁ½µã£¬¹ýµãP£¨x0£¬y0£©×÷PC¡ÍxÖᣬ´¹×ãΪµãC£¬Ö±ÏßAC½»ÍÖÔ²wÓÚÁíÒ»µãB£®
¢ÙÓÃÖ±ÏßlµÄбÂÊk±íʾֱÏßACµÄбÂÊ£»
¢Úд³ö¡ÏAPBµÄ´óС£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬¸ø³öµÄÊǼÆËã1+$\frac{1}{3}$+$\frac{1}{5}$+¡­+$\frac{1}{99}$+$\frac{1}{101}$µÄÖµµÄÒ»¸ö³ÌÐò¿òͼ£¬ÅжϿòÄÚÓ¦ÌîÈëµÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®i£¼101£¿B£®i£¾101£¿C£®i¡Ü101£¿D£®i¡Ý101£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸