精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=$\left\{\begin{array}{l}{-f(x+2),x<8}\\{lo{g}_{\frac{1}{2}}x,x≥8}\end{array}\right.$,则f(0)的值为-3.

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{-f(x+2),x<8}\\{lo{g}_{\frac{1}{2}}x,x≥8}\end{array}\right.$,将x=0代入可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-f(x+2),x<8}\\{lo{g}_{\frac{1}{2}}x,x≥8}\end{array}\right.$,
∴f(0)=-f(2)=f(4)=-f(6)=f(8)=${log}_{\frac{1}{2}}8$=-3,
故答案为:-3

点评 本题考查的知识点是分段函数的应用,函数的值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知a,b是方程x2-6x+4=0的两根,且a>b>0,求$\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\left\{\begin{array}{l}{2x+3\\;x≤0}\\{x+3\\;0<x≤1}\\{5-x\\;x>1}\end{array}\right.$的值域为(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{m\sqrt{1-x{\;}^{2}},-1≤x≤1}\\{|x-2|-1,1<x≤3}\end{array}\right.$,其中m为常数,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\frac{x+1}{x-1}$的值域是(  )
A.RB.(-∞,1)∪(1,+∞)C.(-∞,2)∪(2,+∞)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合M={1,2,a,a2-3a-1},N={-1,3},若N?M,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.画出下列图象:
(1)y=|x2+2x-3|
(2)y=-x2+2|x|+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的值.
(1)f(x)=5x-3,求f(4);
(2)g(t)=4t3+2t-7,求g(2);
(3)F(u)=u,M(u)=6u2+u-3,求F(3)+M(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.观察下列数列的特点,用适当的数填空.
(1)-2,0,(2),4,6,(8 )10;
(2)38,33,28,(23 ),(18 ),13;
(3)1,5,(9 ),13,(17 ),21;
(4)3,6,(9 ),(12),15,(18 )

查看答案和解析>>

同步练习册答案