精英家教网 > 高中数学 > 题目详情
已知复数z1=m+(4-m2)i(m∈R),z2=2cosθ+(λ+3sinθ)i(λ∈R),若z1=z2,求λ的取值范围.
考点:复数相等的充要条件
专题:数系的扩充和复数
分析:利用两复数相等的充要条件得
m=2cosθ
4-m2=λ+3sinθ
,消去m,再利用二次函数的单调性、正弦函数的单调性有界性即可得出.
解答: 解:∵z1=z2
∴由两复数相等的充要条件得
m=2cosθ
4-m2=λ+3sinθ

∴λ=4-4cos2 θ-3sin θ=4sin2 θ-3sin θ
=4(sin θ-
3
8
2-
9
16

∵sin θ∈[-1,1].
由二次函数的性质知λ∈[-
9
16
,7].
∴λ的取值范围是[-
9
16
,7].
点评:本题考查了两复数相等的充要条件、二次函数的单调性、正弦函数的单调性有界性等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,a1=b且an=2an-1+
1
2n
(n>1,n∈N*
(Ⅰ)若b=-
1
8
,求a2,a3,a4
(Ⅱ)若{an}是递增数列,求实数b的取值范围;
(Ⅲ)若?n∈N*,Sn≥S2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)设a∈R,解关于x的不等式ax2-(2a+1)x+2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(1-i)2+1+3i.
(1)若z2+az+b=1-i,求实数a,b的值;
(2)若复数(
1
z
+mi)2在复平面上对应的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2x+2
3
sinxcosx-1
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最小值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二项式(5x-
1
x
n展开式中各项系数之和是各项二项式系数之和的16倍;
(1)求n;
(2)求展开式中二项式系数最大的项;
(3)求展开式中所有x的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个棱柱的直观图(图2)和三视图(图1)(主视图和俯视图是正方形,左视图是等腰直角三角形)如图所示2,其中M、N分别是AB、AC的中点,G是DF上的一动点.

(1)求证:GN⊥AC
(2)当FG=GD时,证明AG∥平面FMC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A对应的变换是先将某平面图形上的点的横坐标保持不变,纵坐标变为原来的2倍,再将所得图形绕原点按顺时针方向旋转90°.
(1)求矩阵A及A的逆矩阵B;
(2)已知矩阵M=
33
24
,求M的特征值和特征向量;
(3)若α=
8
1
在矩阵B的作用下变换为β,求M50β(运算结果用指数式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x上恒有两点关于直线y=kx+3对称,则k的取值范围是
 

查看答案和解析>>

同步练习册答案