【题目】在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B= ![]()
(1)求边c的长;
(2)求角B的大小.
【答案】
(1)解:∵acosB=3,bcosA=l,∴a×
=3,b×
=1,
化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.
相加可得:2c2=8c,解得c=4.
(2)解:由(1)可得:a2﹣b2=8.
由正弦定理可得:
,
又A﹣B=
,∴A=B+
,C=π﹣(A+B)=
,可得sinC=sin
.
∴a=
,b=
.
∴
﹣16sin2B=
,
∴1﹣
﹣(1﹣cos2B)=
,即cos2B﹣
=
,
∴﹣2
═
,
∴
=0或
=1,B∈
.
解得:B=
.
【解析】(1)由acosB=3,bcosA=l,利用余弦定理化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得:
,又A﹣B=
,可得A=B+
,C=
,可得sinC=sin
.代入可得
﹣16sin2B=
,化简即可得出.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:
;余弦定理:
;
;
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos22x﹣2,给出下列命题: ①β∈R,f(x+β)为奇函数;
②α∈(0,
),f(x)=f(x+2α)对x∈R恒成立;
③x1 , x2∈R,若|f(x1)﹣f(x2)|=2,则|x1﹣x2|的最小值为
;
④x1 , x2∈R,若f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z).其中的真命题有( )
A.①②
B.③④
C.②③
D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设样本数据x1 , x2 , …,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1 , y2 , …,y10的均值和方差分别为( )
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x、y满足约束条件
,若目标函数z=ax+by(a>0,b>0)的最大值为2,当
的最小值为m时,则y=sin(mx+
)的图象向右平移
后的表达式为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=
,曲线C的参数方程为
.
(1)写出直线l与曲线C的直角坐标方程;
(2)过点M平行于直线l1的直线与曲线C交于A、B两点,若|MA||MB|=
,求点M轨迹的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn= ![]()
(1)求证:数列{
}为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn , 且6Sn=3n+1+a(n∈N+)
(1)求a的值及数列{an}的通项公式;
(2)设bn=(1﹣an)log3(an2an+1),求
的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.?x0∈R,sinx0+cosx0= ![]()
B.?x≥0且x∈R,2x>x2
C.已知a,b为实数,则a>2,b>2是ab>4的充分条件
D.已知a,b为实数,则a+b=0的充要条件是
=﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com