精英家教网 > 高中数学 > 题目详情
3.已知点C在线段AB上,且$\overrightarrow{AC}$=$\frac{2}{7}$$\overrightarrow{CB}$,则(  )
A.$\overrightarrow{AB}$=$\frac{7}{5}\overrightarrow{BC}$B.$\overrightarrow{AB}$=-$\frac{7}{5}\overrightarrow{BC}$C.$\overrightarrow{AB}$=$\frac{9}{7}\overrightarrow{BC}$D.$\overrightarrow{AB}$=-$\frac{9}{7}\overrightarrow{BC}$

分析 根据题意画出图形,结合图形和平面向量的概念,即可得出结论.

解答 解:如图所示

点C在线段AB上,且$\overrightarrow{AC}$=$\frac{2}{7}$$\overrightarrow{CB}$,
则$\overrightarrow{AB}$=$\frac{9}{7}$$\overrightarrow{CB}$=-$\frac{9}{7}$$\overrightarrow{BC}$.
故选:D.

点评 本题考查了平面向量的几何意义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图.
(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(2)用样本估计总体,如果希望80%的居民每月的用水量不超出标准〜则月均用水量的最低标准定为多少吨,请说明理由;
(3)从频率分布直方图中估计该100位居民月均用水量的众数,中位数,平均数(同一组中的数据用该区间的中点值代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sinxcosx+$\sqrt{3}$cos2x+3.求:
(1)f(x)的最小正周期;
(2)f(x)的最大值及取最大值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线x+2y=2,则x2+y2的最小值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(2x+1)的定义域为[1,3],则f(x)的定义域为:[3,7];f(3-2x)的定义域为:[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\frac{sin(2π+α)}{cos(π+α)}$=-3,求$\frac{2cos(π-α)-3sin(π+α)}{4cos(-α)+sin(2π-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知B=2C,∠BAC的平分线将△ABC分成面积之比为1:$\sqrt{3}$的两部分,求三边之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,半圆C1的极坐标方程为ρ=4sinθ,$θ∈[{\frac{π}{2},π}]$
(1)求半圆C1的参数方程;
(2)设动点A在半圆C1上,动线段OA的中点M的轨迹为C2,点D在C2上,C2在点D处的切线与直线$y=\sqrt{3}x+2$平行,求点D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=2x-2-x的图象(  )
A.关于y轴对称B.关于原点对称C.关于x轴对称D.关于直线y=x对称

查看答案和解析>>

同步练习册答案