精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=2sinxcosx+$\sqrt{3}$cos2x+3.求:
(1)f(x)的最小正周期;
(2)f(x)的最大值及取最大值时x的取值集合.

分析 运用二倍角的正弦和余弦公式,及两角和的正弦公式,化简函数f(x),再利用正弦函数的周期性和最值得出结论.

解答 解:(1)f(x)=2sinxcosx+$\sqrt{3}$cos2x+3=sin2x+$\sqrt{3}$cos2x+3,
∴f(x)=2sin(2x+$\frac{π}{3}$)+3,
∴f(x)的最小正周期T=$\frac{2π}{ω}$=π,
(2)f(x)的最大值为5,
此时2x+$\frac{π}{3}$=2kπ+$\frac{π}{2}$,k∈Z,
解得:x=kπ+$\frac{π}{12}$,k∈Z,
x的取值集合{x丨x=kπ+$\frac{π}{12}$,k∈Z}.

点评 本题主要考查三角恒等变换,正弦函数的周期性和最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x0∈(0,2],使$x_0^2-a{x_0}+1<0$,若?p是真命题,则实数a的取值范围为(  )
A.(-∞,2)B.(-∞,2]C.[-2,2]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}-10}$与数列{an}的通项公式an=$\frac{{2}^{n}-1}{{2}^{n}-10}$,则下列说法正确的是(  )
A.函数f(x)有最大值,数列{an}有最大项B.函数f(x)有最大值,数列{an}无最大项
C.函数f(x)无最大值,数列{an}有最大项D.函数f(x)无最大值,数列{an}无最大项

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}中,a1=m,an+1=$\left\{\begin{array}{l}{16{n}^{2}{,a}_{n}<16{n}^{2}}\\{2{a}_{n},{a}_{n}≥16{n}^{2}}\end{array}\right.$ (n∈N*),若{an}为等比数列,则实数m的取值范围是{m|m≥16或m=8}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若(1-5x)9=a0+a1x+a${\;}_{2}^{\;}$x2+…+a9x9,那么|a0|+|a1|+|a2|+…+|a9|的值是(  )
A.1B.49C.59D.69

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在-2和10之间插入两个数a与b,使得-2,a,b,10成等差数列,求a与b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.己知a(3-a)>0,那么$\frac{1}{a}$$+\frac{9}{3-a}$的最小值是$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点C在线段AB上,且$\overrightarrow{AC}$=$\frac{2}{7}$$\overrightarrow{CB}$,则(  )
A.$\overrightarrow{AB}$=$\frac{7}{5}\overrightarrow{BC}$B.$\overrightarrow{AB}$=-$\frac{7}{5}\overrightarrow{BC}$C.$\overrightarrow{AB}$=$\frac{9}{7}\overrightarrow{BC}$D.$\overrightarrow{AB}$=-$\frac{9}{7}\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是(  )
A.若f(a)•f(b)<0,不存在实数c∈(a,b),使得f(c)=0
B.若f(a)•f(b)<0,存在且只存在一个实数c∈(a,b),使得f(c)=0
C.若f(a)•f(b)>0,不存在实数c∈(a,b),使得f(c)=0
D.若f(a)•f(b)>0,有可能存在实数c∈(a,b),使得f(c)=0

查看答案和解析>>

同步练习册答案