精英家教网 > 高中数学 > 题目详情
某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A、
4
3
π
B、
32
3
π
C、4π
D、16π
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:几何体为圆锥,根据三视图判断圆锥的高与底面半径,设外接球的半径为R,结合图形求得R,代入球的表面积公式计算.
解答: 解:由三视图知:几何体为圆锥,
圆锥的高为1,底面半径为
3

设外接球的半径为R,如图:
则(R-1)2+3=R2⇒R=2.
∴外接球的表面积S=4π×22=16π.
故选:D.
点评:本题考查了由三视图求几何体的外接球的表面积,结合图形的求得外接球的半径是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x∈R时,不等式|x|+|x-1|-|a2-3a+3|≥0恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输出i的值为2,则输入x的最大值是(  )
A、6B、12C、22D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

lg
51000
-8
2
3
=(  )
A、
23
5
B、-
17
5
C、-
18
5
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数
2+i
4-3i
(i是虚数单位)所对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥V-ABCD中,ABCD为正方形,侧棱均相等,P,Q分别为棱VB,VD的中点,则下列结论错误的是(  )
A、直线PQ∥平面ABCD
B、直线AC⊥平面VBD
C、平面APQ⊥平面VAC
D、平面APQ⊥平面VAB

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx-
π
3
)(0<ω<4)图象的一条对称轴方程是x=
12
,将函数f(x)的图象沿x轴向左平移
π
6
得到函数g(x)的图象,则函数g(x)的解析式是(  )
A、g(x)=sin2x
B、g(x)=sin(2x-
π
6
C、g(x)=sin(
4
5
x-
π
6
D、g(x)=sin(
4
5
x-
π
30

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论正确的是(  )
A、若向量
a
b
,则存在唯一的实数λ使
a
b
B、已知向量
a
b
为非零向量,则“
a
b
的夹角为钝角”的充要条件是“
a
b
<0’’
C、“若θ=
π
3
,则cosθ=
1
2
”的否命题为“若θ≠
π
3
,则cosθ≠
1
2
D、若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图.规定:成绩不低于120分时为优秀成绩.
(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;
(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为ξ,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

同步练习册答案