精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Asin(ωx+?)数学公式的部分图象如图所示,若函数y=g(x)的图象与函数y=f(x)的图象关于直线数学公式对称.
(1)求函数g(x)的解析式;
(2)若关于x的方程3[g(x)]2-mg(x)+1=0在区间数学公式上有解,求实数m的取值范围;
(3)令F(x)=f(x)+g(x),x∈[0,π],求函数F(x)的值域.

解:(1)由图可知,A=1,
,∴ω=1,


(2)∵


又3[g(x)]2-mg(x)+1=0,

①当g(x)=0时,m∈φ;
②当时,=≤-3×2=-2

③当0<g(x)≤1时,≥3×2=2

综上,实数m的取值范围是
(3)∵F(x)=f(x)+g(x),
=
又x∈[0,π],∴


∴函数函数F(x)的值域为
分析:(1)利用函数图象先求函数的振幅和周期,再确定初相φ的值,最后利用函数图象的对称性,求得函数g(x)的解析式即可
(2)先求函数g(x)在区间上的值域,再将方程有解问题转化为求函数的值域问题,利用均值定理即可求得函数值域;
(3)先利用三角变换公式将函数F(x)的解析式化简为y=Asin(ωx+φ)型函数,再利用正弦函数的图象和性质求函数值域即可
点评:本题主要考查了y=Asin(ωx+φ)型函数的图象和性质,三角变换公式在化简和求值中的应用,均值定理求函数最值的方法,属中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案